• TI mmWave radar sensors Tutorial 笔记 | Module 5: Angle Estimation


    本系列为TI(Texas Instruments) mmWave radar sensors 系列视频公开课 的学习笔记。

    • 视频网址: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation?context=1128486-1139153-1128542

    • 关注 下面的公众号,回复“ TI毫米波 ”,即可获取 本系列完整的pdf笔记文件~


    内容在CSDN和微信公众号同步更新

    在这里插入图片描述

    • Markdown源文件暂未开源
    • 笔记难免存在问题,欢迎联系指正

    FMCW Radars – Module 1 : Range Estimation
    FMCW Radars – Module 2 : The Phase of the IF Signal
    FMCW Radars – Module 3 : Velocity Estimation
    FMCW Radars – Module 4 : Some System Design Topics
    FMCW Radars – Module 5 : Angle Estimation

    Module 5 Angle Estimation

    • Content
      • Angle Estimation of a single object
      • Field of view
      • Angle resolution
      • Discussion on Range, Velocity and Angle Resolution

    This module: to answer the following question

    • 1 How does the radar estimate the angle of arrival of an object in front of the radar?
    • 2 What if there are multiple objects at different angles ?
    • 3 What determines the maximum field of view ?
    • 4 What does the angle resolution depend on?

    picture 6

    Basis of Angle of Arrival (AoA) estimation

    • Recall:
      • a small change in the distance of the object ⇒ \Rightarrow
      • result in a phase change ( ω \omega ω) in the peak of the range-FFT

    picture 7

    • Angle Estimation :
      • requires at least 2 RX antennas
      • 不同天线回波由于角度不同会存在距离差, results in a phase change in the 2D-FFT peak, 从而计算出AoA

    picture 8

    Question: Why are these two expressions off by a factor of 2?

    • 因为 Δ Φ = 2 π f c Δ τ \Delta \Phi = 2\pi f_c \Delta \tau ΔΦ=2πfcΔτ
    • 而这里的 Δ τ = Δ d / c \Delta \tau = \Delta d/c Δτ=Δd/c , instead of Δ τ = 2 Δ d / c \Delta \tau = 2\Delta d/c Δτ=d/c

    How to measure the AoA of an object using 2 RX antennas?

    • TX antenna transmits a frame of chirps

    picture 9

    • The 2D-FFT corresponding to each RX antenna will have peaks in the same location but with differing phase
      • 如下图

    picture 10

    • The measured phase difference ( ω ) (\omega) (ω) can be used to estimate the AoA of the object
      • ω = 2 π d s i n ( θ ) λ \omega = \frac{2\pi d sin(\theta)}{\lambda} ω=λ2πdsin(θ)
      • ⇒ \Rightarrow θ = s i n − 1 ( λ ω 2 π d ) \theta = sin^{-1} (\frac{\lambda \omega}{2 \pi d}) θ=sin1(2πdλω)

    Estimation accuracy depends A o A AoA AoA

    • Note that the relationship between ω \omega ω and θ \theta θ is non-linear
      • unlike in the case of velocity ( ω = 4 π v T c λ \omega = \frac{4\pi v T_c}{\lambda} ω=λ4πvTc)
    • 非线性的影响:
      • At θ = 0 \theta = 0 θ=0, ω \omega ω is most sensitive to changes in θ \theta θ
      • Hence: estimation of θ \theta θ is more error prone as θ \theta θ increases

    picture 11

    Angular Field of View

    • 如下图,同样是 ∣ ω ∣ < 18 0 ∘ |\omega| < 180 ^\circ ω<180
      • Unambiguous only if ∣ ω ∣ < 18 0 ∘ |\omega| < 180 ^\circ ω<180

    picture 12

    • Unambiguous measurement of angle:
      • ⇒ \Rightarrow ∣ ω ∣ < 18 0 ∘ |\omega| < 180^\circ ω<180
      • $\frac{2\pi d sin(\theta)}{\lambda} < \pi < / f o n t > ∗ ∗ ∗ ∗ < f o n t c o l o r = g r e e n f a c e = " C o m i c S a n s M S , S T X i n w e i " > ** ** </font><fontcolor=greenface="ComicSansMS,STXinwei">\Rightarrow < / f o n t > ∗ ∗ ∗ ∗ < f o n t c o l o r = r e d f a c e = " S e g o e P r i n t , S T K a i t i " > ** ** </font><fontcolor=redface="SegoePrint,STKaiti">\theta < sin^{-1} (\frac{\lambda}{2d})$

    结论:

    • The maximum FoV that can be serviced by two antennas spaced d d d apart is:
      • θ m a x = s i n − 1 ( λ 2 d ) \theta_{max} = sin^{-1} (\frac{\lambda}{2d}) θmax=sin1(2dλ)
      • if spacing d = λ / 2 d=\lambda /2 d=λ/2 results in the largest FoV: ±90 ∘ ^\circ
        (注意这里符号d的含义)

    Measuring AoA of multiple objects at the same range and velocity

    • Consider two objects equidistant from the radar approaching the radar at the same relative speed to the radar
      • The value at the peak has phasor components from both objects
      • ⇒ \Rightarrow Hence previous approach will not work

    picture 13

    • Solution :
      • An FFT on the sequence of phasors corresponding to the 2D-FFT peaks resolves the two objects
      • ⇒ \Rightarrow angle-FFT
      • ω 1 \omega_1 ω1 and ω 2 \omega_2 ω2 correspond to the phase difference between consecutive chirps for the respective objects

    picture 14

    结论

    • θ 1 = s i n − 1 ( λ ω 1 2 π d ) \theta_1 = sin^{-1}(\frac{\lambda \omega_1}{2\pi d}) θ1=sin1(2πdλω1)
    • θ 2 = s i n − 1 ( λ ω 2 2 π d ) \theta_2 = sin^{-1}(\frac{\lambda \omega_2}{2\pi d}) θ2=sin1(2πdλω2)

    Angle Resolution

    • Angle Resolution :
      • Two objects at AOA’s of θ \theta θ and θ + Δ θ \theta + \Delta \theta θ+Δθ
      • How small can Δ θ \Delta \theta Δθ can get?
    • Use the following:
      • An object with an AOA of θ \theta θ has a discrete frequency of ω = 2 π d s i n ( θ ) λ \omega = \frac{2\pi d sin(\theta)}{\lambda} ω=λ2πdsin(θ) in the angle-FFT
      • Criterion for separation in the frequency domain: Δ ω > 2 π N \Delta \omega > \frac{2\pi}{N} Δω>N2π
      • N: the number of samples in the FFT
    • 推导:
      • Δ ω = 2 π d λ ( s i n ( θ + Δ θ ) − s i n ( θ ) ) ≈ 2 π d λ ( c o s ( θ ) Δ θ ) \Delta \omega = \frac{2\pi d}{\lambda} (sin(\theta + \Delta \theta) - sin(\theta)) \approx \frac{2\pi d}{\lambda} (cos(\theta)\Delta \theta) Δω=λ2πd(sin(θ+Δθ)sin(θ))λ2πd(cos(θ)Δθ)
      • 因为 s i n ( θ ) sin(\theta) sin(θ)的derivative是 c o s ( θ ) cos(\theta) cos(θ)
      • ⇒ \Rightarrow Δ ω > 2 π N \Delta \omega > \frac{2\pi}{N} Δω>N2π
      • ⇒ \Rightarrow Δ θ > λ N d c o s ( θ ) \Delta \theta > \frac{\lambda}{Ndcos(\theta)} Δθ>Ndcos(θ)λ

    结论

    • Angle resolution given by: θ r e s = λ N d c o s ( θ ) \theta_{res} = \frac{\lambda}{N d cos(\theta)} θres=Ndcos(θ)λ
    • Resolution is often quoted assuming d = λ / 2 d=\lambda/2 d=λ/2 and θ = 0 \theta = 0 θ=0 ⇒ \Rightarrow θ r e s = 2 / N \theta_{res} = 2/N θres=2/N

    Note 1 :

    • 角度分辨率与角度 θ \theta θ有关
      • Resolution best at θ = 0 \theta = 0 θ=0
    • Resolution degrades as AoA increases (如下图)

    picture 15

    Comparison of Angle & Velocity Estimation

    • 角度速度估计 存在很多相似的地方,可以对比

    • Angle Estimation:

      • 基于:天线的 空间分离
      • 分辨率 θ r e s = λ N d c o s ( θ ) \theta_{res} = \frac{\lambda}{Ndcos(\theta)} θres=Ndcos(θ)λ,分辨率取决于 孔径(空间)大小
      • 最大测量角度( θ m a x = λ 2 d \theta_{max} = \frac{\lambda}{2d} θmax=2dλ)取决于天线间的 空间距离 d d d
    • 速度估计

      • 基于chirps的 时间分离
      • 分辨率 v r e s = λ 2 T f v_{res} = \frac{\lambda}{2T_f} vres=2Tfλ 取决于 帧(时间)长度
      • 最大测量速度 λ T c \frac{\lambda}{T_c} Tcλ取决于chirps的 时间间隔 T c T_c Tc

    picture 16

    Angle Estimation in FMCW radar

    • A single TX, RX chain can estimate the range and velocity of multiple objects
    • localization / imaging: 需要 range + angle
      • angle estimation: needs Multiple RX antennass
      • The 2D FFT grid is generated at each RX chain (correpsonding to each antenna)
      • FFT on the corresponding peak across antennas is used to estimate the angle

    系列完结 End

  • 相关阅读:
    Selenium的使用
    Spring AOP如何使用AspectJ注解进行开发呢?
    Linux操作系统——硬盘的挂载和卸载
    mysql、oracle 构建数据
    关于新版本 tidb dashboard API 调用说明
    页面转变为灰色,如此简单
    封装的方法固定的参数,特殊环境下需要多带参数
    动态格子算法
    SpringBoot SpringBoot 基础篇 4 基于 SpringBoot 的SSMP 整合案例 4.15 删除功能
    JavaScript(Array,String,window对象)入门
  • 原文地址:https://blog.csdn.net/qazwsxrx/article/details/126200810