$\frac{2\pi d sin(\theta)}{\lambda} < \pi
<
/
f
o
n
t
>
∗
∗
∗
∗
<
f
o
n
t
c
o
l
o
r
=
g
r
e
e
n
f
a
c
e
=
"
C
o
m
i
c
S
a
n
s
M
S
,
S
T
X
i
n
w
e
i
"
>
** **
</font>∗∗∗∗<fontcolor=greenface="ComicSansMS,STXinwei">\Rightarrow
<
/
f
o
n
t
>
∗
∗
∗
∗
<
f
o
n
t
c
o
l
o
r
=
r
e
d
f
a
c
e
=
"
S
e
g
o
e
P
r
i
n
t
,
S
T
K
a
i
t
i
"
>
** **
</font>∗∗∗∗<fontcolor=redface="SegoePrint,STKaiti">\theta < sin^{-1} (\frac{\lambda}{2d})$
结论:
The maximum FoV that can be serviced by two antennas spaced
d
d
d apart is:
θ
m
a
x
=
s
i
n
−
1
(
λ
2
d
)
\theta_{max} = sin^{-1} (\frac{\lambda}{2d})
θmax=sin−1(2dλ)
if spacing
d
=
λ
/
2
d=\lambda /2
d=λ/2 results in the largest FoV: ±90
∘
^\circ
∘ (注意这里符号d的含义)
Measuring AoA of multiple objects at the same range and velocity
Consider two objects equidistant from the radar approaching the radar at the same relative speed to the radar
The value at the peak has phasor components from both objects
⇒
\Rightarrow
⇒Hence previous approach will not work
Solution :
An FFT on the sequence of phasors corresponding to the 2D-FFT peaks resolves the two objects
⇒
\Rightarrow
⇒ angle-FFT
ω
1
\omega_1
ω1 and
ω
2
\omega_2
ω2 correspond to the phase difference between consecutive chirps for the respective objects
结论 :
θ
1
=
s
i
n
−
1
(
λ
ω
1
2
π
d
)
\theta_1 = sin^{-1}(\frac{\lambda \omega_1}{2\pi d})
θ1=sin−1(2πdλω1)
θ
2
=
s
i
n
−
1
(
λ
ω
2
2
π
d
)
\theta_2 = sin^{-1}(\frac{\lambda \omega_2}{2\pi d})
θ2=sin−1(2πdλω2)
Angle Resolution
Angle Resolution :
Two objects at AOA’s of
θ
\theta
θ and
θ
+
Δ
θ
\theta + \Delta \theta
θ+Δθ
How small can
Δ
θ
\Delta \theta
Δθ can get?
Use the following:
An object with an AOA of
θ
\theta
θ has a discrete frequency of
ω
=
2
π
d
s
i
n
(
θ
)
λ
\omega = \frac{2\pi d sin(\theta)}{\lambda}
ω=λ2πdsin(θ) in the angle-FFT
Criterion for separation in the frequency domain:
Δ
ω
>
2
π
N
\Delta \omega > \frac{2\pi}{N}
Δω>N2π
N: the number of samples in the FFT
推导:
Δ
ω
=
2
π
d
λ
(
s
i
n
(
θ
+
Δ
θ
)
−
s
i
n
(
θ
)
)
≈
2
π
d
λ
(
c
o
s
(
θ
)
Δ
θ
)
\Delta \omega = \frac{2\pi d}{\lambda} (sin(\theta + \Delta \theta) - sin(\theta)) \approx \frac{2\pi d}{\lambda} (cos(\theta)\Delta \theta)
Δω=λ2πd(sin(θ+Δθ)−sin(θ))≈λ2πd(cos(θ)Δθ)
因为
s
i
n
(
θ
)
sin(\theta)
sin(θ)的derivative是
c
o
s
(
θ
)
cos(\theta)
cos(θ)