Ensemble learning → 集成学习
将一系列模型(也称基模型)的输出结果作为新特征输入到其他模型,这种方法由于实现了模型的层叠,即第一层的模型输出作为第二层模型的输入,第二层模型的输出作为第三层模型的输入,依次类推,最后一层模型输出的结果作为最终结果
不能有泄漏(leak)的情况,也就是说对于训练样本中的每一条数据,基模型输出其结果时并不能用这条数据来训练
它可以帮你打败当前学术界性能最好的算法
有可能将集成的知识迁移到到简单的分类器上
自动化的大型集成策略可以通过添加正则项有效的对抗过拟合,而且并不需要太多的调参和特征选择。所以从原则上讲,stacking非常适合于那些“懒人”
这是目前提升机器学习效果最好的方法,或者说是最效率的方法human ensemble learning