目录

Backbone作用:特征提取
Neck作用:对特征进行一波混合与组合,并且把这些特征传递给预测层
Head作用:进行最终的预测输出
- # anchors
- anchors:
- - [10,13, 16,30, 33,23] # P3/8 stride=8
- - [30,61, 62,45, 59,119] # P4/16
- - [116,90, 156,198, 373,326] # P5/32
-
- backbone:
- # [from, number, module, args]
- # from表示当前模块的输入来自那一层的输出,-1表示来自上一层的输出
- # number表示本模块重复的次数,1表示只有一个,3表示重复3次
- # module: 模块名
- [[-1, 1, Focus, [64, 3]], # 0-P1/2 [3, 32, 3]
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [32, 64, 3, 2]
- [-1, 3, C3, [128]], # 2 [64, 64, 1]
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [64, 128, 3, 2]
- [-1, 9, C3, [256]], # 4 [128, 128, 3]
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [128, 256, 3, 2]
- [-1, 9, C3, [512]], # 6 [256, 256, 3]
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [256, 512, 3, 2]
- [-1, 1, SPP, [1024, [5, 9, 13]]], # 8 [512, 512, [5, 9, 13]]
- [-1, 3, C3, [1024, False]], # 9 [512, 512, 1, False]
- # [nc, anchors, 3个Detect的输出channel]
- # [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
- ]
-
- head:
- [[-1, 1, Conv, [512, 1, 1]], # 10 [512, 256, 1, 1]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11 [None, 2, 'nearest']
- [[-1, 6], 1, Concat, [1]], # 12 cat backbone P4 [1]
- [-1, 3, C3, [512, False]], # 13 [512, 256, 1, False]
-
- [-1, 1, Conv, [256, 1, 1]], # 14 [256, 128, 1, 1]
- [-1, 1, nn.Upsample, [None, 2, 'nearest']], #15 [None, 2, 'nearest']
- [[-1, 4], 1, Concat, [1]], # 16 cat backbone P3 [1]
- [-1, 3, C3, [256, False]], # 17 (P3/8-small) [256, 128, 1, False]
-
- [-1, 1, Conv, [256, 3, 2]], # 18 [128, 128, 3, 2]
- [[-1, 14], 1, Concat, [1]], # 19 cat head P4 [1]
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [256, 256, 1, False]
-
- [-1, 1, Conv, [512, 3, 2]], # 21 [256, 256, 3, 2]
- [[-1, 10], 1, Concat, [1]], # 22 cat head P5 [1]
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [512, 512, 1, False]
-
- [[17, 20, 23], 1, Detect, [nc, anchors]], # 24 Detect(P3, P4, P5)
- ]
作用:下采样
Focus模块的作用是对图片进行切片,类似于下采样,先将图片变为320×320×12的特征图,再经过3×3的卷积操作,输出通道32,最终变为320×320×32的特征图,是一般卷积计算量的4倍,如此做下采样将无信息丢失。
输入:3x640x640
输出:32×320×320

作用:卷积,步长为2下采样,步长为1大小不变
对输入的特征图执行卷积,BN,激活函数操作,在新版的YOLOv5中,作者使用Silu作为激活函数。

作用:为了降低参数量
利用多个小卷积核替代一个大卷积核,先将channel 数减小再扩大(默认减小到一半),具体做法是先进行1×1卷积将channel减小一半,再通过3×3卷积将通道数加倍,并获取特征(共使用两个标准卷积模块),其输入与输出的通道数是不发生改变的。

作用:残差结构,让模型学习更多的特征。

作用:能将任意大小的特征图转换成固定大小的特征向量

作用:融合两层
大小通道相同的两层叠加,通道数相加

添加一个小目标层,160*160。通道数的选择主要目的是为了和上层通道数一致从而能够concat
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
- # Parameters
- nc: 10 # number of classes
- depth_multiple: 1.0 # model depth multiple
- width_multiple: 1.0 # layer channel multiple
- anchors:
- - [5,6, 8,14, 15,11] #4
- - [10,13, 16,30, 33,23] # P3/8
- - [30,61, 62,45, 59,119] # P4/16
- - [116,90, 156,198, 373,326] # P5/32
-
-
- backbone:
- # [from, number, module, args]
- #640*640*3
- [[-1, 1, Focus, [64, 3]], # 0-P1/2
- #320*320*32
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
- #160*160*64
- [-1, 3, C3, [128]], #160*160
- #160*160*64
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
- #80*80*128
- [-1, 9, C3, [256]], #480*80
- #80*80*128
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
- #40*40*256
- [-1, 9, C3, [512]], #40*40
- #40*40*256
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
- #20*20*512
- [-1, 1, SPP, [1024, [5, 9, 13]]],
- [-1, 3, C3, [1024, False]], # 9 20*20
- #20*20*512
- ]
-
- # YOLOv5 v6.0 head
- # concat之后通道翻倍
- head:
- [[-1, 1, Conv, [512, 1, 1]], #20*20*256
- [-1, 1, nn.Upsample, [None, 2, 'nearest']], #40*40*256
- [[-1, 6], 1, Concat, [1]], # cat backbone P4 40*40*512
- [-1, 1, C3, [512, False]], # 13 40*40*256
-
- [-1, 1, Conv, [256, 1, 1]], # 40*40*128
- [-1, 1, nn.Upsample, [None, 2, 'nearest']], #80*80*128
- [[-1, 4], 1, Concat, [1]], # cat backbone P3 80*80*256
- [-1, 1, C3, [256, False]], # 17 (P3/8-small) 80*80*128
-
- [-1, 1, Conv, [128, 1, 1]], # 80*80*64
- [-1, 1, nn.Upsample, [None, 2, 'nearest']], #160*160*64
- [[-1, 2], 1, Concat, [1]], # cat backbone P3 160*160*128
- [-1, 1, C3, [128, False]], # 21 (P3/8-small) 160*160*64
-
- [-1, 1, Conv, [128, 3, 2]], #80*80*64
- [[-1, 18], 1, Concat, [1]], # cat head P4 80*80*128
- [-1, 1, C3, [256, False]], # 24 (P4/16-medium) 80*80*128
-
- [-1, 1, Conv, [256, 3, 2]], # 40*40*128
- [[-1, 14], 1, Concat, [1]], # cat head P4 40*40*256
- [-1, 1, C3, [512, False]], # 27 (P4/16-medium) 40*40*256
-
- [-1, 1, Conv, [512, 3, 2]], # 20*20*256
- [[-1, 10], 1, Concat, [1]], # cat head P5 20*20*512
- [-1, 1, C3, [1024, False]], # 30 (P5/32-large) 20*20*512
-
- [[21, 24,27,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
Shufflenetv2
旷视轻量化卷积神经网络Shufflenetv2,通过大量实验提出四条轻量化网络设计准则,对输入输出通道、分组卷积组数、网络碎片化程度、逐元素操作对不同硬件上的速度和内存访问量MAC(Memory Access Cost)的影响进行了详细分析:
准则一:输入输出通道数相同时,内存访问量MAC最小
Mobilenetv2就不满足,采用了拟残差结构,输入输出通道数不相等
准则二:分组数过大的分组卷积会增加MAC
Shufflenetv1就不满足,采用了分组卷积(GConv)
准则三:碎片化操作(多通路,把网络搞的很宽)对并行加速不友好
Inception系列的网络
准则四:逐元素操作(Element-wise,例如ReLU、Shortcut-add等)带来的内存和耗时不可忽略
Shufflenetv1就不满足,采用了add操作
针对以上四条准则,作者提出了Shufflenetv2模型,通过Channel Split替代分组卷积,满足四条设计准则,达到了速度和精度的最优权衡。
Shufflenetv2有两个结构:basic unit和unit from spatial down sampling(2×)
basic unit:输入输出通道数不变,大小也不变
unit from spatial down sample :输出通道数扩大一倍,大小缩小一倍(降采样)
Shufflenetv2整体哲学要紧紧向论文中提出的轻量化四大准则靠拢,基本除了准则四之外,都有效的避免了
为了解决GConv(Group Convolution)导致的不同group之间没有信息交流,只在同一个group内进行特征提取的问题,Shufflenetv2设计了Channel Shuffle操作进行通道重排,跨group信息交流
1. common.py文件修改:直接在最下面加入如下代
- # ---------------------------- ShuffleBlock start -------------------------------
-
- # 通道重排,跨group信息交流
- def channel_shuffle(x, groups):
- batchsize, num_channels, height, width = x.data.size()
- channels_per_group = num_channels // groups
-
- # reshape
- x = x.view(batchsize, groups,
- channels_per_group, height, width)
-
- x = torch.transpose(x, 1, 2).contiguous()
-
- # flatten
- x = x.view(batchsize, -1, height, width)
-
- return x
-
-
- class conv_bn_relu_maxpool(nn.Module):
- def __init__(self, c1, c2): # ch_in, ch_out
- super(conv_bn_relu_maxpool, self).__init__()
- self.conv = nn.Sequential(
- nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),
- nn.BatchNorm2d(c2),
- nn.ReLU(inplace=True),
- )
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
-
- def forward(self, x):
- return self.maxpool(self.conv(x))
-
-
- class Shuffle_Block(nn.Module):
- def __init__(self, inp, oup, stride):
- super(Shuffle_Block, self).__init__()
-
- if not (1 <= stride <= 3):
- raise ValueError('illegal stride value')
- self.stride = stride
-
- branch_features = oup // 2
- assert (self.stride != 1) or (inp == branch_features << 1)
-
- if self.stride > 1:
- self.branch1 = nn.Sequential(
- self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
- nn.BatchNorm2d(inp),
- nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
- nn.BatchNorm2d(branch_features),
- nn.ReLU(inplace=True),
- )
-
- self.branch2 = nn.Sequential(
- nn.Conv2d(inp if (self.stride > 1) else branch_features,
- branch_features, kernel_size=1, stride=1, padding=0, bias=False),
- nn.BatchNorm2d(branch_features),
- nn.ReLU(inplace=True),
- self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
- nn.BatchNorm2d(branch_features),
- nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
- nn.BatchNorm2d(branch_features),
- nn.ReLU(inplace=True),
- )
-
- @staticmethod
- def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
- return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
-
- def forward(self, x):
- if self.stride == 1:
- x1, x2 = x.chunk(2, dim=1) # 按照维度1进行split
- out = torch.cat((x1, self.branch2(x2)), dim=1)
- else:
- out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
-
- out = channel_shuffle(out, 2)
-
- return out
-
-
- # ---------------------------- ShuffleBlock end --------------------------------
2. yolo.py文件修改:在yolo.py的parse_model函数中,加入conv_bn_relu_maxpool, Shuffle_Block两个模块

3. 新建yaml文件:在model文件下新建yolov5-shufflenetv2.yaml文件,复制以下代码即可
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
- # Parameters
- nc: 10 # number of classes
- depth_multiple: 1.0 # model depth multiple
- width_multiple: 1.0 # layer channel multiple
- anchors:
- - [5,6, 8,14, 15,11] #4
- - [10,13, 16,30, 33,23] # P3/8
- - [30,61, 62,45, 59,119] # P4/16
- - [116,90, 156,198, 373,326] # P5/32
-
- backbone:
- #640*640*3
- [[ -1, 1, conv_bn_relu_maxpool, [ 32 ] ], # 0-P2/4
- #320*320*32
- [ -1, 1, Shuffle_Block, [ 128, 2 ] ], # 1-P3/8
- #160*160*64
- [ -1, 3, Shuffle_Block, [ 128, 1 ] ], # 2
- #160*160*64
- [ -1, 1, Shuffle_Block, [ 256, 2 ] ], # 3-P4/16
- #80*80*128
- [ -1, 7, Shuffle_Block, [ 256, 1 ] ], # 4
- #80*80*128
- [ -1, 1, Shuffle_Block, [ 512, 2 ] ], # 5-P5/32
- #40*40*256
- [ -1, 3, Shuffle_Block, [ 512, 1 ] ], # 6
- #40*40*256
- [ -1, 1, Shuffle_Block, [ 1024, 2 ] ], # 7
- #20*20*512
- [ -1, 3, Shuffle_Block, [ 1024, 1 ] ], # 8
- #20*20*512
- ]
-
- # YOLOv5 v6.0 head
- # concat之后通道翻倍
- head:
- [[-1, 1, Conv, [512, 1, 1]], #20*20*256
- [-1, 1, nn.Upsample, [None, 2, 'nearest']], #40*40*256
- [[-1, 6], 1, Concat, [1]], # cat backbone P4 40*40*512
- [-1, 1, C3, [512, False]], # 12 40*40*256
-
- [-1, 1, Conv, [256, 1, 1]], # 40*40*128
- [-1, 1, nn.Upsample, [None, 2, 'nearest']], #80*80*128
- [[-1, 4], 1, Concat, [1]], # cat backbone P3 80*80*256
- [-1, 1, C3, [256, False]], # 16 (P3/8-small) 80*80*128
-
- [-1, 1, Conv, [128, 1, 1]], # 80*80*64
- [-1, 1, nn.Upsample, [None, 2, 'nearest']], #160*160*64
- [[-1, 2], 1, Concat, [1]], # cat backbone P3 160*160*128
- [-1, 1, C3, [128, False]], # 20 (P3/8-small) 160*160*64
-
- [-1, 1, Conv, [128, 3, 2]], #80*80*64
- [[-1, 17], 1, Concat, [1]], # cat head P4 80*80*128
- [-1, 1, C3, [256, False]], # 23 (P4/16-medium) 80*80*128
-
- [-1, 1, Conv, [256, 3, 2]], # 40*40*128
- [[-1, 13], 1, Concat, [1]], # cat head P4 40*40*256
- [-1, 1, C3, [512, False]], # 26 (P4/16-medium) 40*40*256
-
- [-1, 1, Conv, [512, 3, 2]], # 20*20*256
- [[-1, 9], 1, Concat, [1]], # cat head P5 20*20*512
- [-1, 1, C3, [1024, False]], # 29 (P5/32-large) 20*20*512
-
- [[20, 23,26,29], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
右侧是轻量化后的,可以看到参数数量明显减少很多

4. 训练运行
python train.py --data data/VisDrone.yaml --cfg models/yolov5s-tiny.yaml --weights weights/yolov5s.pt --batch-size 4 --epochs 50


测试效果较好