NLLLoss(Negative Log Likelihood Loss),最大似然函数。 把Label对应的输出log_result值拿出来,求和取平均。 --------------------------------------------------------------------------------------- CrossEntropyLoss交叉熵损失函数。 一步执行完:softmax+log+NLLLoss合并起来了。
#torch.LongTensor是64位整型 #torch.Tensor默认torch.FloatTensor,是32位浮点类型数据。 #torch.tensor是一个类,用于生成一个单精度浮点类型的张量。
- import torch
- criterion = torch.nn.CrossEntropyLoss()
- Y = torch.LongTensor([2,0,1])
-
- Y_pred1 = torch.Tensor([
- [0.1,0.2,0.9],
- [1.1,0.1,0.2],
- [0.2,2.1,0.1]
- ])
-
- Y_pred2 = torch.Tensor([
- [0.8,0.2,0.3],
- [0.2,0.3,0.5],
- [0.2,0.2,0.5]
- ])
-
- l1 = criterion(Y_pred1,Y)
- l2 = criterion(Y_pred2,Y)
- print("Loss1 = ",l1.data.item(),"\nLoss2 = ",l2.data.item())
- #minst数据集的均值是0.1307,标准差是0.3081
- import torch
- from torchvision import transforms
- from torchvision import datasets
- from torch.utils.data import DataLoader
- import torch.nn.functional as F
- import torch.optim as optim
-
- batch_size = 64
- transform = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307),(0.3081))
- ])
-
- train_dataset = datasets.MNIST(root='../dataset/mnist/',train=True,download=True,transform=transform)
-
- train_loader = DataLoader(train_dataset,shuffle = True,batch_size=batch_size)
-
- test_dataset = datasets.MNIST(root='../dataset/mnist/',train=False,download=True,transform=transform)
-
- test_loader = DataLoader(train_dataset,shuffle = False,batch_size=batch_size)
-
- class Net(torch.nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.l1 = torch.nn.Linear(784,512)
- self.l2 = torch.nn.Linear(512,256)
- self.l3 = torch.nn.Linear(256, 128)
- self.l4 = torch.nn.Linear(128, 64)
- self.l5 = torch.nn.Linear(64, 10)
-
- def forward(self,x):
- x = x.view(-1,784)
- x = F.relu(self.l1(x))
- x = F.relu(self.l2(x))
- x = F.relu(self.l3(x))
- x = F.relu(self.l4(x))
- return self.l5(x) #最后一层不做激活,不进行非线性变换
-
- model = Net()
-
- criterion = torch.nn.CrossEntropyLoss()
- optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
-
- def train(epoch):
- running_loss = 0.0
- for batch_idx,data in enumerate(train_loader,0):
- inputs, target = data
- optimizer.zero_grad()
-
- #forward + backward + update
- outputs = model(inputs)
- loss = criterion(outputs,target)
- loss.backward()
- optimizer.step()
-
- running_loss +=loss.item()
- if batch_idx % 300 ==299:
- print('[%d,%5d]loss:%.3f'%(epoch+1,batch_idx+1,running_loss/300))
- running_loss = 0
-
- def test():
- correct = 0
- total = 0
- with torch.no_grad():
- for data in test_loader:
- images,labels = data
- outputs = model(images)
- _,predicted = torch.max(outputs.data,dim=1) #dim=1维度1,行是第0个维度,列是第1个维度
- total +=labels.size(0)
- correct +=(predicted==labels).sum().item()
- print('Accuracy on test set:%d %%'%(100*correct/total) )
-
-
- if __name__ == '__main__':
- for epoch in range(10):
- train(epoch)
- test()
结果:
[1, 300]loss:2.223
[1, 600]loss:0.923
[1, 900]loss:0.435
Accuracy on test set:89 %
[2, 300]loss:0.328
[2, 600]loss:0.272
[2, 900]loss:0.239
Accuracy on test set:94 %
[3, 300]loss:0.188
[3, 600]loss:0.175
[3, 900]loss:0.158
Accuracy on test set:96 %
[4, 300]loss:0.126
[4, 600]loss:0.130
[4, 900]loss:0.121
Accuracy on test set:97 %
[5, 300]loss:0.098
[5, 600]loss:0.099
[5, 900]loss:0.097
Accuracy on test set:97 %
[6, 300]loss:0.078
[6, 600]loss:0.079
[6, 900]loss:0.081
Accuracy on test set:97 %
[7, 300]loss:0.066
[7, 600]loss:0.063
[7, 900]loss:0.064
Accuracy on test set:98 %
[8, 300]loss:0.050
[8, 600]loss:0.056
[8, 900]loss:0.051
Accuracy on test set:98 %
[9, 300]loss:0.041
[9, 600]loss:0.043
[9, 900]loss:0.043
Accuracy on test set:99 %
[10, 300]loss:0.034
[10, 600]loss:0.034
[10, 900]loss:0.037
Accuracy on test set:99 %
Process finished with exit code 0