题目链接https://pintia.cn/problem-sets/994805342720868352/problems/994805343727501312
题目大意:给出BST的先序遍历,给出两个节点,求这两个节点的最深公共祖先。如果节点不存在或者公共祖先不存在或某一个节点就是祖先,需要特殊输出。
思路:建树,DFS找出从根到U
和V
的路径path_u
和path_v
,然后遍历,找到第一个不相同的元素即可。没找到说明就是没有共同祖先。如果path_u
是path_v
是空的,说明这个元素根本不在树里。
完整代码
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
class Node{
public:
int val;
Node* left, *right;
Node(){left = right = nullptr;}
Node(int val) { this->val = val; left = right = nullptr;}
};
vector<int> pre;
vector<int> path_u, path_v;
Node* root;
Node* buildTree(int s, int t) {
if (s > t)
return nullptr;
Node* parent = new Node(pre[s]);
int l = s+1;
int r = l;
while (r <= t) {
if (pre[r] > pre[s])
break;
else
r++;
}
parent->left = buildTree(l, r-1);
parent->right = buildTree(r, t);
return parent;
}
void getPath(vector<int>& path, Node* parent, int v) {
if (parent == nullptr)
return;
path.push_back(parent->val);
if (parent->val == v)
return;
if (v < parent->val)
getPath(path, parent->left, v);
else
getPath(path, parent->right, v);
}
int main() {
int M, N;
scanf("%d %d", &M, &N);
for (int i = 0; i < N; i++) {
int tmp;
scanf("%d", &tmp);
pre.push_back(tmp);
}
root = buildTree(0, N-1);
for (int i = 0; i < M; i++) {
int U, V;
bool flag_u = true, flag_v = true;
scanf("%d %d", &U, &V);
path_u.clear();
path_v.clear();
getPath(path_u, root, U);
getPath(path_v, root, V);
if (path_u.back() != U)
flag_u = false;
if (path_v.back() != V)
flag_v = false;
if (!flag_u & !flag_v) {
printf("ERROR: %d and %d are not found.\n", U, V);
continue;
}
if (!flag_u) {
printf("ERROR: %d is not found.\n", U);
continue;
}
if (!flag_v) {
printf("ERROR: %d is not found.\n", V);
continue;
}
int len = min(path_u.size(), path_v.size());
int ptr;
for (ptr = 0; ptr < len; ptr++) {
if (path_v[ptr] != path_u[ptr])
break;
}
ptr--;
int A = path_v[ptr];
if (U == A) {
printf("%d is an ancestor of %d.\n", A, V);
continue;
}
if (V == A) {
printf("%d is an ancestor of %d.\n", A, U);
continue;
}
printf("LCA of %d and %d is %d.\n", U, V, A);
}
delete root;
return 0;
}