异常值值会影响回归模型和分类模型的准确性,因此检测和删除它们是机器学习过程中的重要一步。在较大的数据集上,检测和去除异常值要困难得多,因此数据科学家经常应用自动异常检测算法(例如隔离森林)来帮助识别和去除异常值。
顾名思义,隔离森林是一种基于树的异常检测算法。它使用无监督学习方法来检测异常数据点,然后可以将其从训练数据中删除。在移除异常值的数据集上重新训练模型通常会提高性能。
隔离森林(Isolation Forest) 又名孤立森林,是一种从异常点出发,通过指定规则进行划分,根据划分次数进行判断的异常检测方法。由周志华教授等人提出。该算法对较大数据集的异常值处理有着很大效果,同样适合小数据集。