• 【智能优化算法 】基于适应度相关优化器求解单目标优化问题附matlab代码


    1 内容介绍

    在本文中,提出了一种新的群体智能算法,称为适应度依赖优化器(FDO)。蜂拥而至的繁殖过程及其集体决策启发了这种算法。它与蜜蜂算法或人工蜂群算法没有算法联系。值得一提的是,FDO 被认为是一种基于粒子群优化(PSO)的算法,它通过增加速度(步速)来更新搜索代理的位置。但是,FDO 计算速度的方式不同;它使用问题适应度函数值来产生权重,这些权重在探索和利用阶段指导搜索代理。在本文中,介绍了 FDO 算法,并解释了该想法背后的动机。此外,在一组 19 个经典基准测试函数上对 FDO 进行了测试,并将结果与 PSO、遗传算法(GA)和蜻蜓算法(DA)三种著名算法进行了比较;此外,FDO 在 IEEE 进化计算基准测试函数大会(CEC-C06,2019 竞赛)[1] 上进行了测试。将结果与三种现代算法进行比较:(DA)、鲸鱼优化算法 (WOA) 和 salp swarm 算法 (SSA)。 FDO 结果在大多数情况下显示出更好的性能,而在其他情况下则显示出比较结果。此外,使用 Wilcoxon 秩和检验对结果进行统计检验,以显示结果的显着性。同样,探索和开发阶段的 FDO 稳定性也使用不同的标准测量进行验证和性能证明。最后,将 FDO 应用到实际应用中作为其可行性的证据。​

    2 仿真代码

    % 此函数包含基准的完整信息和实现

    % 文中表1、表2、表3中的函数

    % lb是下限: lb=[lb_1,lb_2,...,lb_d]

    % up是上限: ub=[ub_1,ub_2,...,ub_d]

    % dim是变量的数量(问题的维度)

    function [lb, ub, dim, fobj] = Get_Functions_details(F)

    switch F

        case 'F1'

            % Sphere

            fobj = @F1;

            lb=-100;

            ub=100;

            dim=30;

            

        case 'F2'

            % Schwefel 2.22

            fobj = @F2;

            lb=-10;

            ub=10;

            dim=50;

            

        case 'F3'

            % Schwefel 1.2

            fobj = @F3;

            lb=-100;

            ub=100;

            dim=100;

            

        case 'F4'

            fobj = @F4;

            lb=-100;

            ub=100;

            dim=30;

            

        case 'F5'

            fobj = @F5;

            lb=-30;

            ub=30;

            dim=30;

            

        case 'F6'

            fobj = @F6;

            lb=-100;

            ub=100;

            dim=30;

            

        case 'F7'

            fobj = @F7;

            lb=-1.28;

            ub=1.28;

            dim=30;

            

        case 'F8'

            fobj = @F8;

            lb=-500;

            ub=500;

            dim=30;

            

        case 'F9'

            fobj = @F9;

            lb=-5.12;

            ub=5.12;

            dim=30;

            

        case 'F10'

            fobj = @F10;

            lb=-32;

            ub=32;

            dim=30;

            

        case 'F11'

            fobj = @F11;

            lb=-600;

            ub=600;

            dim=30;

            

        case 'F12'

            fobj = @F12;

            lb=-50;

            ub=50;

            dim=30;

            

        case 'F13'

            fobj = @F13;

            lb=-50;

            ub=50;

            dim=30;

            

        case 'F14'

            fobj = @F14;

            lb=-65.536;

            ub=65.536;

            dim=2;

            

        case 'F15'

            fobj = @F15;

            lb=-5;

            ub=5;

            dim=4;

            

        case 'F16'

            fobj = @F16;

            lb=-5;

            ub=5;

            dim=2;

            

        case 'F17'

            fobj = @F17;

            lb=[-5,0];

            ub=[10,15];

            dim=2;

            

        case 'F18'

            fobj = @F18;

            lb=-2;

            ub=2;

            dim=2;

            

        case 'F19'

            fobj = @F19;

            lb=0;

            ub=1;

            dim=3;

            

        case 'F20'

            fobj = @F20;

            lb=0;

            ub=1;

            dim=6;     

            

        case 'F21'

            fobj = @F21;

            lb=0;

            ub=10;

            dim=4;    

            

        case 'F22'

            fobj = @F22;

            lb=0;

            ub=10;

            dim=4;    

            

        case 'F23'

            fobj = @F23;

            lb=0;

            ub=10;

            dim=4;            

    end

    end

    % F1

    function o = F1(x)

    o=sum(x.^2);

    end

    % F2

    function o = F2(x)

    o=sum(abs(x))+prod(abs(x));

    end

    % F3

    function o = F3(x)

    dim=size(x,2);

    o=0;

    for i=1:dim

        o=o+sum(x(1:i))^2;

    end

    end

    % F4

    function o = F4(x)

    o=max(abs(x));

    end

    % F5

    function o = F5(x)

    dim=size(x,2);

    o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);

    end

    % F6

    function o = F6(x)

    o=sum(abs((x+.5)).^2);

    end

    % F7

    function o = F7(x)

    dim=size(x,2);

    o=sum([1:dim].*(x.^4))+rand;

    end

    % F8

    function o = F8(x)

    o=sum(-x.*sin(sqrt(abs(x))));

    end

    % F9

    function o = F9(x)

    dim=size(x,2);

    o=sum(x.^2-10*cos(2*pi.*x))+10*dim;

    end

    % F10

    function o = F10(x)

    dim=size(x,2);

    o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);

    end

    % F11

    function o = F11(x)

    dim=size(x,2);

    o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;

    end

    % F12

    function o = F12(x)

    dim=size(x,2);

    o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...

    (1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));

    end

    % F13

    function o = F13(x)

    dim=size(x,2);

    o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...

    ((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));

    end

    % F14

    function o = F14(x)

    aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...

    -32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

    for j=1:25

        bS(j)=sum((x'-aS(:,j)).^6);

    end

    o=(1/500+sum(1./([1:25]+bS))).^(-1);

    end

    % F15

    function o = F15(x)

    aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];

    bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;

    o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);

    end

    % F16

    function o = F16(x)

    o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);

    end

    % F17

    function o = F17(x)

    o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;

    end

    % F18

    function o = F18(x)

    o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...

        (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));

    end

    % F19

    function o = F19(x)

    aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];

    pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];

    o=0;

    for i=1:4

        o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

    end

    end

    % F20

    function o = F20(x)

    aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];

    cH=[1 1.2 3 3.2];

    pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...

    .2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];

    o=0;

    for i=1:4

        o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

    end

    end

    % F21

    function o = F21(x)

    aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

    cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

    o=0;

    for i=1:5

        o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

    end

    end

    % F22

    function o = F22(x)

    aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

    cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

    o=0;

    for i=1:7

        o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

    end

    end

    % F23

    function o = F23(x)

    aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

    cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

    o=0;

    for i=1:10

        o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

    end

    end

    function o=Ufun(x,a,k,m)

    o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));

    end

    3 运行结果

    4 参考文献

    [1] Abbas D K ,  Rashid T A ,  Bacanin K , et al. Using Fitness Dependent Optimizer for Training Multi-layer Perceptron[J].  2022.

    博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

    部分理论引用网络文献,若有侵权联系博主删除。

  • 相关阅读:
    随手记:vue2 filters this指向undefined
    Junit执行源码分析,Junit是怎么跑起来的(二)
    NLP模型笔记2022-18:GCN/GNN模型在nlp中的使用【论文+源码】
    【算法】快排
    [GO语言基础] 一.为什么我要学习Golang以及GO语言入门普及
    计算二进制中1的个数
    [linux] 安装WEB服务器(tomcat),环境是32位
    PCB布线及后仿真验证过程(干货满满,建议收藏)
    2022-06-08你抢不到的可达鸭,芯片成本只要几块钱KFC(-JPG)
    JavaScript基础知识14——运算符:逻辑运算符,运算符优先级
  • 原文地址:https://blog.csdn.net/qq_59747472/article/details/126143776