题意
给定一个长度为 n n n 的排列 p p p { 1 , 2 , ⋯ , n } \{1, 2, \cdots, n\} {1,2,⋯,n} 和一个非负整数 k k k,计算排列 p p p 中的子集 T T T,满足集合大小为 k k k 且 T T T 与 P ( T ) P(T) P(T) 没有交集, P ( T ) = { y ∣ y = p x , x ∈ T } P(T) = \{y \mid y= p_x,x \in T\} P(T)={y∣y=px,x∈T}
分析:
考虑将排列
p
p
p 看成图,
i
i
i 向
p
i
p_i
pi 连边,会形成若干个环,那么原问题等价于从图中选出
k
k
k 个点且每个环中不能有相邻被选择的点的方案数。考虑构造每个环
i
i
i 的生成函数
1
+
f
S
i
,
1
x
+
f
S
i
,
2
x
2
+
⋯
+
f
S
i
,
⌊
S
i
2
⌋
x
⌊
S
i
2
⌋
1 + f_{S_i,1}x + f_{S_i,2} x ^ 2 + \cdots + f_{S_i,\lfloor \frac{S_i}{2} \rfloor} x ^ {\lfloor \frac{S_i}{2} \rfloor}
1+fSi,1x+fSi,2x2+⋯+fSi,⌊2Si⌋x⌊2Si⌋
其中
S
i
S_i
Si 表示环
i
i
i 的大小,
f
S
i
,
j
f_{S_i,j}
fSi,j 表示大小为
S
i
S_i
Si 的环中选出
j
j
j 个互不相邻的点的方案数,根据鸽巢原理,若
j
>
⌊
S
i
2
⌋
j > \lfloor \dfrac{S_i}{2} \rfloor
j>⌊2Si⌋,一定有两个点相邻,所以生成函数只需要取到
⌊
S
i
2
⌋
\lfloor \dfrac{S_i}{2} \rfloor
⌊2Si⌋ 项即可。那么答案就为
[
x
k
]
∏
i
=
1
cnt
∑
j
=
0
⌊
S
i
2
⌋
f
S
i
,
j
x
j
[x ^ k]\prod_{i = 1} ^ {\text{cnt}} \sum_{j = 0} ^ {\lfloor \frac{S_i}{2} \rfloor} f_{S_i,j}x^j
[xk]i=1∏cntj=0∑⌊2Si⌋fSi,jxj
cnt
\text{cnt}
cnt 为图中环的数量。那么现在考虑求出
f
(
n
,
m
)
f(n, m)
f(n,m),即大小为
n
n
n 的环选出
m
m
m 个互不相邻的点的方案数。
我们先考虑不是环的情况,也就是链式不相邻问题,那么可以先放 m m m 个被选择的球,考虑把中间 m − 1 m - 1 m−1 个空放上一个不被选择的球,那么剩下 n − 2 × m − 1 n - 2\times m - 1 n−2×m−1 个球就可以随便放,问题就相当于有 m + 1 m + 1 m+1 个盒子,每个盒子可空的方案数,那么就是经典隔板法,方案数为 g ( n , m ) = ( n − 2 × m − 1 + m + 1 − 1 m + 1 − 1 ) = ( n − m + 1 m ) g(n, m) =\dbinom{n - 2\times m - 1 + m + 1 - 1}{m + 1 - 1}=\dbinom{n - m + 1}{m} g(n,m)=(m+1−1n−2×m−1+m+1−1)=(mn−m+1)
现在考虑是环的情况,假设对于环上一个点,有两种情况,若这个点被选择,则这个点的相邻点不能被选择,那么其他 n − 3 n - 3 n−3 个点就是 g ( n − 3 , m − 1 ) g(n - 3, m - 1) g(n−3,m−1),若这个点不被选择,那么剩下 n − 1 n - 1 n−1 个点就是 g ( n − 1 , m ) g(n - 1, m) g(n−1,m),所以 f ( n , m ) = g ( n − 3 , m − 1 ) + g ( n − 1 , m ) = ( n − m − 1 m − 1 ) + ( n − m m ) f(n, m) = g(n - 3, m - 1) + g(n - 1, m) = \dbinom{n - m - 1}{m - 1} + \dbinom{n - m}{m} f(n,m)=g(n−3,m−1)+g(n−1,m)=(m−1n−m−1)+(mn−m)
#include
using namespace std;
using i64 = long long;
constexpr int mod = 998244353;
int norm(int x) {
if (x < 0) {
x += mod;
}
if (x >= mod) {
x -= mod;
}
return x;
}
template<class T>
T power(T a, int b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
struct Z {
int x;
Z(int x = 0) : x(norm(x)) {}
int val() const {
return x;
}
Z operator-() const {
return Z(norm(mod - x));
}
Z inv() const {
assert(x != 0);
return power(*this, mod - 2);
}
Z &operator*=(const Z &rhs) {
x = i64(x) * rhs.x % mod;
return *this;
}
Z &operator+=(const Z &rhs) {
x = norm(x + rhs.x);
return *this;
}
Z &operator-=(const Z &rhs) {
x = norm(x - rhs.x);
return *this;
}
Z &operator/=(const Z &rhs) {
return *this *= rhs.inv();
}
friend Z operator*(const Z &lhs, const Z &rhs) {
Z res = lhs;
res *= rhs;
return res;
}
friend Z operator+(const Z &lhs, const Z &rhs) {
Z res = lhs;
res += rhs;
return res;
}
friend Z operator-(const Z &lhs, const Z &rhs) {
Z res = lhs;
res -= rhs;
return res;
}
friend Z operator/(const Z &lhs, const Z &rhs) {
Z res = lhs;
res /= rhs;
return res;
}
friend istream &operator>>(istream &is, Z &a) {
i64 v;
is >> v;
a = Z(v);
return is;
}
friend ostream &operator<<(ostream &os, const Z &a) {
return os << a.val();
}
};
vector<int> rev;
vector<Z> roots{0, 1};
void dft(vector<Z> &a) {
int n = a.size();
if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i ++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}
for (int i = 0; i < n; i ++) {
if (rev[i] < i) {
swap(a[i], a[rev[i]]);
}
}
if (int(roots.size()) < n) {
int k = __builtin_ctz(roots.size());
roots.resize(n);
while ((1 << k) < n) {
Z e = power(Z(3), (mod - 1) >> (k + 1));
for (int i = 1 << (k - 1); i < (1 << k); i ++) {
roots[i << 1] = roots[i];
roots[i << 1 | 1] = roots[i] * e;
}
k ++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j ++) {
Z u = a[i + j], v = a[i + j + k] * roots[k + j];
a[i + j] = u + v, a[i + j + k] = u - v;
}
}
}
}
void idft(vector<Z> &a) {
int n = a.size();
reverse(a.begin() + 1, a.end());
dft(a);
Z inv = (1 - mod) / n;
for (int i = 0; i < n; i ++) {
a[i] *= inv;
}
}
struct Poly {
vector<Z> a;
Poly() {}
Poly(const vector<Z> &a) : a(a) {}
Poly(const initializer_list<Z> &a) : a(a) {}
int size() const {
return a.size();
}
void resize(int n) {
a.resize(n);
}
Z operator[](int idx) const {
if (idx < size()) {
return a[idx];
} else {
return 0;
}
}
Z &operator[](int idx) {
return a[idx];
}
Poly mulxk(int k) const {
auto b = a;
b.insert(b.begin(), k, 0);
return Poly(b);
}
Poly modxk(int k) const {
k = min(k, size());
return Poly(vector<Z>(a.begin(), a.begin() + k));
}
Poly divxk(int k) const {
if (size() <= k) {
return Poly();
}
return Poly(vector<Z>(a.begin() + k, a.end()));
}
friend Poly operator+(const Poly &a, const Poly &b) {
vector<Z> res(max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i ++) {
res[i] = a[i] + b[i];
}
return Poly(res);
}
friend Poly operator-(const Poly &a, const Poly &b) {
vector<Z> res(max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i ++) {
res[i] = a[i] - b[i];
}
return Poly(res);
}
friend Poly operator*(Poly a, Poly b) {
if (a.size() == 0 || b.size() == 0) {
return Poly();
}
int sz = 1, tot = min(5000000, a.size() + b.size() - 1);
while (sz < tot) {
sz *= 2;
}
a.a.resize(sz);
b.a.resize(sz);
dft(a.a);
dft(b.a);
for (int i = 0; i < sz; i ++) {
a.a[i] = a[i] * b[i];
}
idft(a.a);
a.resize(tot);
return a;
}
friend Poly operator*(Z a, Poly b) {
for (int i = 0; i < int(b.size()); i ++) {
b[i] *= a;
}
return b;
}
friend Poly operator*(Poly a, Z b) {
for (int i = 0; i < int(a.size()); i ++) {
a[i] *= b;
}
return a;
}
Poly &operator+=(Poly b) {
return (*this) = (*this) + b;
}
Poly &operator-=(Poly b) {
return (*this) = (*this) - b;
}
Poly &operator*=(Poly b) {
return (*this) = (*this) * b;
}
Poly deriv() const {
if (a.empty()) {
return Poly();
}
vector<Z> res(size() - 1);
for (int i = 0; i < size() - 1; i ++) {
res[i] = (i + 1) * a[i + 1];
}
return Poly(res);
}
Poly integr() const {
vector<Z> res(size() + 1);
for (int i = 0; i < size(); i ++) {
res[i + 1] = a[i] / (i + 1);
}
return Poly(res);
}
Poly inv(int m) const {
Poly x{a[0].inv()};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
}
return x.modxk(m);
}
Poly log(int m) const {
return (deriv() * inv(m)).integr().modxk(m);
}
Poly exp(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
}
return x.modxk(m);
}
Poly pow(int k, int m) const {
int i = 0;
while (i < size() && a[i].val() == 0) {
i ++;
}
if (i == size() || 1LL * i * k >= m) {
return Poly(vector<Z>(m));
}
Z v = a[i];
auto f = divxk(i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
}
Poly sqrt(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((mod + 1) / 2);
}
return x.modxk(m);
}
Poly mulT(Poly b) const {
if (b.size() == 0) {
return Poly();
}
int n = b.size();
reverse(b.a.begin(), b.a.end());
return ((*this) * b).divxk(n - 1);
}
};
vector<Z> fact, infact;
void init(int n) {
fact.resize(n + 1), infact.resize(n + 1);
fact[0] = infact[0] = 1;
for (int i = 1; i <= n; i ++) {
fact[i] = fact[i - 1] * i;
}
infact[n] = fact[n].inv();
for (int i = n; i; i --) {
infact[i - 1] = infact[i] * i;
}
}
Z C(int n, int m) {
if (n < 0 || m < 0 || n < m) return Z(0);
return fact[n] * infact[n - m] * infact[m];
}
struct DSU {
vector<int> p, Size;
DSU(int n) : p(n), Size(n, 1) {
iota(p.begin(), p.end(), 0);
}
int find(int x) {
return p[x] == x ? p[x] : p[x] = find(p[x]);
}
bool same(int u, int v) {
return find(u) == find(v);
}
void merge(int u, int v) {
u = find(u), v = find(v);
if (u != v) {
Size[v] += Size[u];
p[u] = v;
}
}
};
void solve() {
int n, k;
cin >> n >> k;
DSU p(n + 1);
vector<int> a(n + 1);
for (int i = 1; i <= n; i ++) {
cin >> a[i];
p.merge(i, a[i]);
}
vector<vector<Z>> f(n + 1);
int cnt = 0;
for (int i = 1; i <= n; i ++) {
if (p.find(i) == i) {
cnt ++;
f[cnt].resize(p.Size[i] / 2 + 1);
for (int j = 0; j <= p.Size[i] / 2; j ++) {
f[cnt][j] = C(p.Size[i] - j - 1, j - 1) + C(p.Size[i] - j, j);
}
}
}
function<Poly(int, int)> dc = [&](int l, int r) {
if (l == r) return Poly(f[l]);
int mid = l + r >> 1;
return dc(l, mid) * dc(mid + 1, r);
};
Poly ans = dc(1, cnt);
ans.resize(k + 1);
cout << ans[k] << "\n";
}
signed main() {
init(1e7);
cin.tie(0) -> sync_with_stdio(0);
int T;
cin >> T;
while (T --) {
solve();
}
}