💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥
🎉作者研究:🏅🏅🏅本科计算机专业,研究生电气学硕。主要研究方向是电力系统和智能算法、机器学习和深度学习。目前熟悉python网页爬虫、机器学习、群智能算法、深度学习的相关内容。希望将计算机和电网有效结合!⭐️⭐️⭐️
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者,博主专门做了一个专栏目录,整个专栏只放了一篇文章,足见我对其重视程度:博主专栏目录。做到极度细致,方便大家进行学习!亲民!!!还有我开了一个专栏给女朋友的,很浪漫的喔,代码学累的时候去瞧一瞧,看一看:女朋友的浪漫邂逅。有问题可以私密博主,博主看到会在第一时间回复。
📝目前更新:🌟🌟🌟电力系统相关知识,期刊论文,算法,机器学习和人工智能学习。
🚀支持:🎁🎁🎁如果觉得博主的文章还不错或者您用得到的话,可以关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!
🎉🎉欢迎您的到来🎉🎉
⛅⛅⛅ 📃个人主页:电力系统科研室🌈🌈🌈
📚📚📚📋专栏目录:电力系统与算法之美👨💻👨💻👨💻
【现在公众号名字改为:荔枝科研社】
👨🎓博主课外兴趣:中西方哲学,送予读者:
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。在我这个专栏记录我有空时的一些哲学思考和科研笔记:科研和哲思。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
📋📋📋本文目录如下:⛳️⛳️⛳️
目录
电动汽车EV(Electric Vehicle)具有清洁环保、高效节能的优点,不仅能缓解化石能源危机,而且能够有效地减少温室气体的排放。2015年10月,国务院发布加快EV充电基础设施建设的指导意见,指出到2020年充电基础设施能满足500万辆EV充电需求,预计未来几年我国EV的保有量将大幅增长。然而,规模化EV的无序充电会加大电网负荷的峰谷差,并对电力系统的规划、配电网的电能质量和经济运行以及稳定性带来显著的影响,反之.对EV的充电行为进行有序优化控制,充分发挥EV作为分布式储能元件的优势,能够实现削峰填谷、平抑可再生能源出力波动的功能,并为电网提供调峰、调频等辅助服务。
下图为大规模EV分散接入配电网的场景示意图。EV的管理框架分为配电网代理商、本地代理商和EV 3个层次。配电网代理商分布在高中压HVIMV(High VoltageMedium Voltage)变电层中,负责配电网的安全稳定控制以及EV的有序协调控制;本地代理商分布在中低压MVLV(Mediuim VoltageLow Voltage)变电层中,负责区域EV充电负荷的管控。充电站连接在配电变压器下,配电变压器下除了EV负荷EVL(EV Load)外,还有常规的居民负荷RL(Residential Load)。
EV进入充电站后,充电智能终端可以获取电池的总容量、荷电状态SoC(State Of Charge)等信息,并通过以太网或专用无线网络提交给本地代理商;用户设置取车时刻以及充电预期荷电状态,充电结束后按实际充电电量向本地代理商支付费用。本地代理商将EV的状态信息和电量需求信息汇集后上传给配电网代理商。配电网代理商采取分时段实时滚动优化的控制策略,当有新的EV接入电网时,更新EV的充电需求信息,执行优化,控制算法,并将充电计划分区下达给各个本地代理商,由本地代理商执行对管控区域内EV的充电控制。
本文仅展现部分代码,全部代码见:🍞正在为您运送作品详情
- info.date.min = datestr(data_24h(idx_min,1),'dd.mm.yyyy');
- info.date.avg = datestr(data_24h(idx_avg,1),'dd.mm.yyyy');
- info.date.max = datestr(data_24h(idx_max,1),'dd.mm.yyyy');
- info.rad.min.j = raw24h{4}(idx_min,2); % J/cm^2
- info.rad.avg.j = raw24h{4}(idx_avg,2); % J/cm^2
- info.rad.max.j = raw24h{4}(idx_max,2); % J/cm^2
- info.rad.min.kwh = raw24h{4}(idx_min,2)*(100/60)^2; % Wh/m^2
- info.rad.avg.kwh = raw24h{4}(idx_avg,2)*(100/60)^2; % Wh/m^2
- info.rad.max.kwh = raw24h{4}(idx_max,2)*(100/60)^2; % Wh/m^2
- info.pv.min = data_24h(idx_min,2); % kWh
- info.pv.avg = data_24h(idx_avg,2); % kWh
- info.pv.max = data_24h(idx_max,2); % kWh
部分理论引用网络文献,若有侵权请联系博主删除。