摘要: 提出了一种全梯度标准粒子群优化反馈(FGSPSO-BP)神经网络的工业机器人末端位姿补偿模型.首先,提出一种运动学逆变换算法,通过机器人末端位姿对机器人各关节角度值进行计算,并采用Matlab验证了运动学逆变换算法的准确性.然后,提出一种基于全梯度下降法的FGSPSO-BP算法,将机器人实际末端位姿参数作为输入样本,实际位姿与理想位姿的各关节角度值之差作为输出样本,对网络进行训练,以得到机器人实际末端位姿参数与各关节角度值差的关系,采用测试样本对网络模型算法进行了验证.最后,利用新松机器人所采集的实际位姿和理想位姿数据,通过神经网络的方法,实现了对机器人各实际关节角度值的补偿,使机器人达到了理想的末端位置与姿态