题集链接;
二分
手表店有 n 块手表出售,第 i 个手表售价 a i a_i ai 。若购买 k 个手表,那么第 i 个手表需要花费 a i + k i a_i+ki ai+ki 元。现有 m 元,求最多可购买多少块手表;
我们考虑到每个手表的花费与购买总数有关,不方便直接贪心处理,我们便选择二分出 k 后,按照实际花费进行排序并贪心;
队友代码如下
#include
#include
#include
using namespace std;
int main() {
cin.tie(0) -> sync_with_stdio(false);
int n, m;
cin >> n >> m;
vector<long long> a(n);
for (auto& x : a) cin >> x;
auto solve = [&](int k) -> bool {
vector<long long> b(a);
for (int i = 0; i < n; i++) {
b[i] += 1ll * (i + 1) * k;
}
sort(b.begin(), b.end());
long long sum = 0;
for (int i = 0; i < k; i++) {
sum += b[i];
}
return sum <= m;
};
int l = 0, r = n;
int ans = 0;
while (l <= r) {
int mid = (l + r) / 2;
if (solve(mid)) {
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << ans << '\n';
}
机器人有一长度为 n 的字符串,现在向机器人询问 3n 次某位是否为 1 ,但是在所有询问中,机器人会返回最多一个错误。对于机器人的回答,若存在唯一的字符串则输出,否则返回 -1 ;
首先排除一些明显无唯一答案的情况,比如某一位没有被询问过;
由于是否有错未知,我们需要首先定位错误的发生,对于某被询问大于两次的位,若其结果出现一次不同,则可以断定错误发生在此处;
若无法定位错误,除所有位均被询问大于两次且答案相同外,其余情况均无唯一原串;
队友代码如下
#include
#include
using namespace std;
int main()
{
int n;
while (cin >> n)
{
vector a(n, pair<int, int>(0, 0));
for (int i = 0; i < n * 3; i++)
{
int x;
string s;
cin >> x >> s;
if (s[0] == 'Y')
{
a[x].second++;
}
else
{
a[x].first++;
}
}
bool f = true;
for (int i = 0; i < n; i++)
{
if (a[i].first + a[i].second == 0)//没有问到
{
f = false;
break;
}
}
int cnt = 0;
if (f)
{
for (int i = 0; i < n; i++)
{
if (a[i].first + a[i].second > 2)
{
if (a[i].first == 1 || a[i].second == 1)//错误发生
{
cnt++;
}
else if (a[i].first != 0 && a[i].second != 0)//同一位上至少两个错误
{
f = false;
break;
}
if (cnt == 2)//多个错误
{
f = false;
break;
}
}
}
}
if (f)
{
if (cnt == 0)//若无法定位错误
{
for (int i = 0; i < n; i++)
{
if (a[i].first == 1 || a[i].second == 1)//无法确定结果真实性
{
f = false;
break;
}
}
}
for (int i = 0; i < n; i++)
{
if (a[i].first == 1 && a[i].second == 1)//若出现11
{
f = false;
break;
}
}
}
if (f)
{
for (int i = 0; i < n; i++)
{
if (a[i].first > a[i].second)
{
cout << 0;
}
else
cout << 1;
}
}
else
{
cout << -1;
}
cout << '\n';
}
return 0;
}
树状DP
给出一个 n 个节点的树,每个节点有颜色 0 或 1 ,求其有多少连通子图,满足度数为 1 的节点颜色相同;
构造状态表示:
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] 为以节点 i 为根的子树中,有多少连通子图,度数为 1 的节点(若 i 不是唯一一个则不考虑 i )颜色为 j;
推导状态转移方程:
d
p
[
i
]
[
j
]
=
∏
k
∈
s
o
n
i
(
1
+
d
p
[
k
]
[
j
]
)
−
[
c
o
l
[
i
]
!
=
j
]
dp[i][j]=\prod_{k\in son_i}(1+dp[k][j])-[col[i]!=j]
dp[i][j]=k∈soni∏(1+dp[k][j])−[col[i]!=j]
前面的连乘式显然为乘法计数原理,对于每一个子节点k,有
d
p
[
k
]
[
j
]
dp[k][j]
dp[k][j] 种选择,还可以不选该子节点;
对于后面的减数,则表示若 i 节点颜色与目标相异,则需要去除仅选择 i 一个点的情况;
答案即为
∑
i
d
p
[
i
]
[
1
]
+
d
p
[
i
]
[
0
]
−
(
∑
k
∈
s
o
n
i
d
p
[
k
]
[
!
c
o
l
[
n
]
]
)
\sum_idp[i][1]+dp[i][0]-(\sum_{k\in son_i}dp[k][!col[n]])
i∑dp[i][1]+dp[i][0]−(k∈soni∑dp[k][!col[n]])
后面的减法是减去以 i 为根节点,并且仅选择了一个子树的情况,此处不符合题意;
#include
using namespace std;
typedef long long ll;
const ll M = 1e9 + 7;
vector<int> rod[300005];
ll col[300005];
ll dp[300005][2];
ll ans;
void dfs(int x, int f)
{
ll tmp1 = 1, tmp0 = 1, sum = 0;
for (auto y : rod[x])
{
if (y == f)
continue;
dfs(y, x);
sum += (dp[y][col[x] ^ 1]);
sum %= M;
tmp1 *= (1 + dp[y][1]) % M;
tmp1 %= M;
tmp0 *= (1 + dp[y][0]) % M;
tmp0 %= M;
}
dp[x][1] = tmp1 - (col[x] != 1) + M;
dp[x][0] = tmp0 - (col[x] != 0) + M;
dp[x][1] %= M;
dp[x][0] %= M;
ans += dp[x][1] + dp[x][0] - sum + M;
ans %= M;
}
int main()
{
int n;
while (cin >> n)
{
for (int i = 1; i <= n; i++)
rod[i].clear();
ans = 0;
string g;
cin >> g;
for (int i = 0; i < n; i++)
{
col[i + 1] = g[i] - '0';
}
for (int i = 1; i < n; i++)
{
int u, v;
scanf("%d%d", &u, &v);
rod[u].push_back(v);
rod[v].push_back(u);
}
dfs(1, 0);
cout << ans << endl;
}
}
计算几何
洛谷原题,更改输入顺序和输出位数即可
对于这个数据量,我们可以对每一个盘寻找其被覆盖的区间,并进行区间和并算出被覆盖总长;
注意盘被上层内含的情况;
累加每个盘的剩余总长即是答案;
#include
using namespace std;
#define double long double
const double eps = 1e-16;
const double PI = acos(-1.0);
int sign(double x) // 符号函数
{
if (fabs(x) < eps)
return 0;
if (x < 0)
return -1;
return 1;
}
struct Point
{
double x, y;
Point(double a = 0, double b = 0) { x = a, y = b; }
Point operator+(const Point &a) const { return Point(x + a.x, y + a.y); }
Point operator-(const Point &a) const { return Point(x - a.x, y - a.y); }
Point operator*(const double &a) const { return Point(x * a, y * a); }
Point operator/(const double &a) const { return Point(x / a, y / a); }
bool operator==(const Point &a) const { return !sign(x - a.x) && !sign(y - a.y); }
bool operator<(const Point &a) const { return (fabs(x - a.x) < eps) ? (y < a.y) : (x < a.x); }
};
struct Line
{
Point a, v;
Line(Point x = Point(), Point y = Point()) { a = x, v = y; }
};
struct Circle
{
Point o;
double r;
Circle(Point x = Point(), double y = 0) { o = x, r = y; }
};
double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; }
double cross(Point a, Point b) { return a.x * b.y - b.x * a.y; }
double get_length(Point a) { return sqrt(dot(a, a)); }
Point get_line_intersection(Line m, Line n)
{
Point u = m.a - n.a;
if (sign(cross(m.v, n.v)) == 0)
return Point(0, 0);
double t = cross(n.v, u) / cross(m.v, n.v);
return m.a + m.v * t;
}
double distance_to_line(Point p, Line m) { return fabs(cross(p - m.a, m.v) / get_length(m.v)); }
pair<Point, Point> line_circle_intersection(Line l, Circle c)
{
Point h = get_line_intersection(l, Line(c.o, Point(-l.v.y, l.v.x)));
if (sign(distance_to_line(h, l) - c.r) > 0)
return {Point(), Point()};
Point e = l.v / get_length(l.v);
double k =
sqrt(c.r * c.r - fabs(cross(c.o - l.a, l.v)) * fabs(cross(c.o - l.a, l.v)) / dot(l.v, l.v));
return {h - e * k, h + e * k};
}
Circle ccl[1003];
int n;
int circle_relation(Circle p, Circle q)
{
double d = get_length(p.o - q.o), l = fabs(p.r - q.r);
if (sign(d - p.r - q.r) > 0)
return 5;
else if (sign(d - p.r - q.r) == 0)
return 4;
else if (sign(d - l) > 0)
return 3;
else if (sign(d - l) == 0)
return 2;
else
return 1;
}
pair<Point, Point> circle_circle_intersection(Circle a, Circle b)
{
double d = get_length(a.o - b.o);
double d1 = a.r * (a.r * a.r + d * d - b.r * b.r) / (2 * a.r * d);
double h1 = sqrt(a.r * a.r - d1 * d1);
Point ed = b.o - a.o;
Point h = a.o + ed / get_length(ed) * d1;
return {h + Point(ed.y, -ed.x) / get_length(ed) * h1,
h - Point(ed.y, -ed.x) / get_length(ed) * h1};
}
double get_angle(Point a, Point b) { return acos(dot(a, b) / get_length(a) / get_length(b)); }
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
{
scanf("%Lf%Lf%Lf", &ccl[i].o.x, &ccl[i].o.y, &ccl[i].r);
}
vector<pair<double, double>> lim;
double ans = 0;
for (int i = 0; i < n; i++)
{
lim.clear();
double ers = 0;
bool zero = 0;
for (int j = i + 1; j < n; j++)
{
int tmp = circle_relation(ccl[i], ccl[j]);
if (tmp == 1 && ccl[i].r < ccl[j].r)
{
zero = 1;
break;
}
else if (tmp == 3)
{
auto pii = circle_circle_intersection(ccl[i], ccl[j]);
Point to = ccl[j].o - ccl[i].o;
pair<double, double> deg = {
atan2((pii.first - ccl[i].o).y, (pii.first - ccl[i].o).x),
atan2((pii.second - ccl[i].o).y, (pii.second - ccl[i].o).x)};
if (deg.first > deg.second)
{
swap(deg.first, deg.second);
}
if (sign(fabs(deg.first - atan2(to.y, to.x)) - PI) >= 0 ||
sign(fabs(deg.second - atan2(to.y, to.x)) - PI) >= 0)
{
lim.push_back({deg.second, PI});
lim.push_back({-PI, deg.first});
}
else
{
lim.push_back(deg);
}
}
}
if (zero)
continue;
if (lim.empty())
{
ers = 0;
}
else
{
sort(lim.begin(), lim.end());
double st = lim[0].first, ed = lim[0].second;
for (int i = 1; i < lim.size(); i++)
{
if (sign(lim[i].first - ed) <= 0)
{
ed = max(lim[i].second, ed);
}
else
{
ers += ed - st;
st = lim[i].first, ed = lim[i].second;
}
}
ers += ed - st;
}
ans += (2 * PI - ers) * ccl[i].r;
// printf("*%Lf %Lf %d\n", ers, ans, lim.size());
}
printf("%.10Lf", ans);
}
Manacher(马拉车算法)
给定长度为 n 的小写字母串,分别求有多少以 k , f, c 结尾的回文子串;
由于马拉车求的是以每个字符为中心的最长回文串,我们只需要枚举以某点为中心,所有小于等于该点最长回文串半径的回文串,判断是否符合条件并计数即可;
最初还担心T,实际上可以过~
#include
using namespace std;
const int M = 998244353;
const int maxn = 5e5 + 5;
char s[maxn * 2], str[maxn * 2];
int d[maxn * 2], len;
void getstr()
{ //重定义字符串
int k = 0;
str[k++] = '@'; //开头加个特殊字符防止越界
for (int i = 0; i < len; i++)
{
str[k++] = '#';
str[k++] = s[i];
}
str[k++] = '#';
len = k;
str[k] = 0; //字符串尾设置为0,防止越界
}
int k, f, c;
int manacher()
{
int mx = 0, id; // mx为最右边,id为中心点
int maxx = 0;
for (int i = 0; i < len; i++)
{
if (i < mx)
d[i] = min(mx - i + 1, d[2 * id - i]);
else
d[i] = 1;
while (str[i + d[i]] == str[i - d[i]])
d[i]++;
if (d[i] + i - 1 > mx)
{
mx = d[i] + i - 1;
id = i;
maxx = max(maxx, d[i]);
}
}
return (maxx - 1);
}
int main()
{
while (cin >> len)
{
scanf("%s", &s);
getstr();
memset(d, 0, sizeof d);
manacher();
k = f = c = 0;
for (int i = 1; i < len; i++)
{
for (int j = 1; j <= d[i]; j++)
{
if (str[i - j + 1] == 'k')
k++;
if (str[i - j + 1] == 'f')
f++;
if (str[i - j + 1] == 'c')
c++;
}
}
printf("%d %d %d\n", k, f, c);
}
}
计算几何
给定图形 ∣ x ∣ + ∣ y ∣ + ∣ x + y ∣ ⩽ n |x|+|y|+|x+y|\leqslant n ∣x∣+∣y∣+∣x+y∣⩽n 和 x 2 + y 2 ⩽ n 2 / 4 x^2+y^2\leqslant n^2/4 x2+y2⩽n2/4 求两者交面积;
经过matplotlib绘制,发现前者形状如下:
便可以直接表示出面积~
队友代码如下
#include
#include
using namespace std;
const double PI = acos(-1);
int main() {
double n;
cin >> n;
double r = n / 2;
printf("%.8f\n" , r * r * PI / 2 + 2 * r * r);
}
现有 n-k 对耳机,每次随机拿一个(不是一对),求最少拿多少次能使手中耳机对数大于k;
如果存在解,先考虑最坏情况:
若先拿出的 n-k 个耳机都是不成对的,那么还需要再拿 k+1 个才能满足题意;
即至少需要拿 n+1 个;
#include
using namespace std;
const int M = 998244353;
int main() {
long long n,k;
while(cin>>n>>k)
{
if(n-k>=k+1)printf("%lld\n",n+1);
else printf("-1\n");
}
}
这场的难度梯度有点怪