• C. Array Elimination-- Codeforces Round #751 (Div. 2)


    C. Array Elimination

    time limit per test

    2 seconds

    memory limit per test

    512 megabytes

    input

    standard input

    output

    standard output

    You are given array a1,a2,…,ana1,a2,…,an, consisting of non-negative integers.

    Let's define operation of "elimination" with integer parameter kk (1≤k≤n1≤k≤n) as follows:

    • Choose kk distinct array indices 1≤i1
    • Calculate x=ai1 & ai2 & … & aikx=ai1 & ai2 & … & aik, where && denotes the bitwise AND operation (notes section contains formal definition).
    • Subtract xx from each of ai1,ai2,…,aikai1,ai2,…,aik; all other elements remain untouched.

    Find all possible values of kk, such that it's possible to make all elements of array aa equal to 00 using a finite number of elimination operations with parameter kk. It can be proven that exists at least one possible kk for any array aa.

    Note that you firstly choose kk and only after that perform elimination operations with value kk you've chosen initially.

    Input

    Each test contains multiple test cases. The first line contains the number of test cases tt (1≤t≤1041≤t≤104). Description of the test cases follows.

    The first line of each test case contains one integer nn (1≤n≤2000001≤n≤200000) — the length of array aa.

    The second line of each test case contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai<2300≤ai<230) — array aa itself.

    It's guaranteed that the sum of nn over all test cases doesn't exceed 200000200000.

    Output

    For each test case, print all values kk, such that it's possible to make all elements of aa equal to 00 in a finite number of elimination operations with the given parameter kk.

    Print them in increasing order.

    Example

    input

    Copy

    5
    4
    4 4 4 4
    4
    13 7 25 19
    6
    3 5 3 1 7 1
    1
    1
    5
    0 0 0 0 0
    

    output

    Copy

    1 2 4
    1 2
    1
    1
    1 2 3 4 5
    

    Note

    In the first test case:

    • If k=1k=1, we can make four elimination operations with sets of indices {1}{1}, {2}{2}, {3}{3}, {4}{4}. Since && of one element is equal to the element itself, then for each operation x=aix=ai, so ai−x=ai−ai=0ai−x=ai−ai=0.
    • If k=2k=2, we can make two elimination operations with, for example, sets of indices {1,3}{1,3} and {2,4}{2,4}: x=a1 & a3x=a1 & a3 == a2 & a4a2 & a4 == 4 & 4=44 & 4=4. For both operations x=4x=4, so after the first operation a1−x=0a1−x=0 and a3−x=0a3−x=0, and after the second operation — a2−x=0a2−x=0 and a4−x=0a4−x=0.
    • If k=3k=3, it's impossible to make all aiai equal to 00. After performing the first operation, we'll get three elements equal to 00 and one equal to 44. After that, all elimination operations won't change anything, since at least one chosen element will always be equal to 00.
    • If k=4k=4, we can make one operation with set {1,2,3,4}{1,2,3,4}, because x=a1 & a2 & a3 & a4x=a1 & a2 & a3 & a4 =4=4.

    In the second test case, if k=2k=2 then we can make the following elimination operations:

    • Operation with indices {1,3}{1,3}: x=a1 & a3x=a1 & a3 == 13 & 25=913 & 25=9. a1−x=13−9=4a1−x=13−9=4 and a3−x=25−9=16a3−x=25−9=16. Array aa will become equal to [4,7,16,19][4,7,16,19].
    • Operation with indices {3,4}{3,4}: x=a3 & a4x=a3 & a4 == 16 & 19=1616 & 19=16. a3−x=16−16=0a3−x=16−16=0 and a4−x=19−16=3a4−x=19−16=3. Array aa will become equal to [4,7,0,3][4,7,0,3].
    • Operation with indices {2,4}{2,4}: x=a2 & a4x=a2 & a4 == 7 & 3=37 & 3=3. a2−x=7−3=4a2−x=7−3=4 and a4−x=3−3=0a4−x=3−3=0. Array aa will become equal to [4,4,0,0][4,4,0,0].
    • Operation with indices {1,2}{1,2}: x=a1 & a2x=a1 & a2 == 4 & 4=44 & 4=4. a1−x=4−4=0a1−x=4−4=0 and a2−x=4−4=0a2−x=4−4=0. Array aa will become equal to [0,0,0,0][0,0,0,0].

    Formal definition of bitwise AND:

    Let's define bitwise AND (&&) as follows. Suppose we have two non-negative integers xx and yy, let's look at their binary representations (possibly, with leading zeroes): xk…x2x1x0xk…x2x1x0 and yk…y2y1y0yk…y2y1y0. Here, xixi is the ii-th bit of number xx, and yiyi is the ii-th bit of number yy. Let r=x & yr=x & y is a result of operation && on number xx and yy. Then binary representation of rr will be rk…r2r1r0rk…r2r1r0, where:

    ri={1, if xi=1 and yi=10, if xi=0 or yi=0ri={1, if xi=1 and yi=10, if xi=0 or yi=0

    =========================================================================

    首先二进制每一位都必须变成0才行,而且每一位的变化并不会影响其他位置,考虑单个位置来看,一旦我们选择的数里面这一位有0,那么我们无论如何也无法消去这一位,故必须选择有1的,加入有4个1,我们选1,2,4是可以的,选择3就不可以,5个1的时候,选1,5个是可以的,也就是必须选择因数,每个位置都必须是因数,那么就是全部位置gcd的因数

    1. #include
    2. # include
    3. # include
    4. using namespace std;
    5. typedef long long int ll;
    6. ll cnt[50];
    7. int main()
    8. {
    9. int t;
    10. cin>>t;
    11. while(t--)
    12. {
    13. ll n;
    14. cin>>n;
    15. memset(cnt,0,sizeof(cnt));
    16. int flag=0;
    17. for(int i=1;i<=n;i++)
    18. {
    19. ll x;
    20. cin>>x;
    21. if(x)
    22. flag=1;
    23. int len=0;
    24. while(x)
    25. {
    26. if(x%2)cnt[len]++;
    27. x/=2;
    28. len++;
    29. }
    30. }
    31. ll ans=0;
    32. for(int i=0;i<=30;i++)
    33. {
    34. if(cnt[i])
    35. ans=__gcd(ans,cnt[i]);
    36. }
    37. if(!flag)
    38. {
    39. for(int i=1;i<=n;i++)
    40. {
    41. cout<" ";
    42. }
    43. continue;
    44. }
    45. for(int i=1;i<=ans;i++)
    46. {
    47. if(ans%i==0)
    48. {
    49. cout<" ";
    50. }
    51. }
    52. cout<
    53. }
    54. return 0;
    55. }

  • 相关阅读:
    React项目中使用Echarts
    将swagger注解导入apifox的IDEA配置
    详解欧拉计划第199题:迭代放圆
    第一章:最新版零基础学习 PYTHON 教程(第九节 - Python 语句中的 – 多行语句)
    【linux】shell编程 脚本语法
    mac下安装redis
    【Conda】【Anaconda】Linux下conda设置自动补全
    【腾讯云原生降本增效大讲堂】Caelus全场景在离线混部
    Mockjs在vue中的使用
    Spark安装
  • 原文地址:https://blog.csdn.net/jisuanji2606414/article/details/126125320