摘要: 为了更好地提取与学习风速在时域和频域上的特征,解决风速信号时域随机性和频域复杂性问题,提出了一种基于小波分解(WD)、变分模态分解(VMD)、长短时记忆(LSTM)网络和注意力机制(AT)的短期风速组合预测模型(WD-VMD-DLSTM-AT).在此基础上,提出了一种基于注意力机制的多输入多输出(MIMO)的编码解码多步预测模型(MMED-AT).通过实验对比分析,所提出的组合预测模型具有最优的统计误差,在短期风速预测方面能显著提高预测精度.基于
京公网安备 11010502049817号