( 1 ) ∫ 1 x 2 + 1 d x = l n ( x + x 2 + 1 ) + C ; ( 2 ) ∫ 1 x 2 x 2 − 1 d x = x 2 − 1 x + C ; ( 3 ) ∫ 2 x ( x 2 + 1 ) ( x + 1 ) 2 d x = a r c t a n x + 1 x + 1 + C ; ( 4 ) ∫ s e c x d x = l n ∣ t a n x + s e c x ∣ + C ; ( 5 ) ∫ x c o s x d x = x s i n x + c o s x + C ; ( 6 ) ∫ e x s i n x d x = 1 2 e x ( s i n x − c o s x ) + C . (1) ∫1√x2+1dx=ln(x+√x2+1)+C; (2) ∫1x2√x2−1dx=√x2−1x+C; (3) ∫2x(x2+1)(x+1)2dx=arctan x+1x+1+C; (4) ∫sec xdx=ln |tan x+sec x|+C; (5) ∫xcos xdx=xsin x+cos x+C; (6) ∫exsin xdx=12ex(sin x−cos x)+C. (1) ∫x2+11dx=ln(x+x2+1)+C; (2) ∫x2x2−11dx=xx2−1+C; (3) ∫(x2+1)(x+1)22xdx=arctan x+x+11+C; (4) ∫sec xdx=ln ∣tan x+sec x∣+C; (5) ∫xcos xdx=xsin x+cos x+C; (6) ∫exsin xdx=21ex(sin x−cos x)+C.
( 1 ) [ l n ( x + x 2 + 1 ) + C ] ′ = 1 x + x 2 + 1 ⋅ ( 1 + x x 2 + 1 ) = 1 x 2 + 1 ( 2 ) ( x 2 − 1 x + C ) ′ = x x 2 − 1 ⋅ x − x 2 − 1 x 2 = 1 x 2 x 2 − 1 ( 3 ) ( a r c t a n x + 1 x + 1 + C ) ′ = 1 x 2 + 1 − 1 ( x + 1 ) 2 = 2 x ( x 2 + 1 ) ( x + 1 ) 2 ( 4 ) ( l n ∣ t a n x + s e c x ∣ + C ) ′ = 1 t a n x + s e c x ⋅ ( s e c 2 x + s e c x t a n x ) = s e c x ( 5 ) ( x s i n x + c o s x + C ) ′ = s i n x + x c o s x − s i n x = x c o s x ( 6 ) [ 1 2 e x ( s i n x − c o s x ) + C ] ′ = 1 2 e x ( s i n x − c o s x ) + 1 2 e x ( c o s x + s i n x ) = e x s i n x (1) [ln(x+√x2+1)+C]′=1x+√x2+1⋅(1+x√x2+1)=1√x2+1 (2) (√x2−1x+C)′=x√x2−1⋅x−√x2−1x2=1x2√x2−1 (3) (arctan x+1x+1+C)′=1x2+1−1(x+1)2=2x(x2+1)(x+1)2 (4) (ln |tan x+sec x|+C)′=1tan x+sec x⋅(sec2 x+sec xtan x)=sec x (5) (xsin x+cos x+C)′=sin x+xcos x−sin x=xcos x (6) [12ex(sin x−cos x)+C]′=12ex(sin x−cos x)+12ex(cos x+sin x)=exsin x (1) [ln(x+x2+1)+C]′=x+x2+11⋅(1+x2+1x)=x2+11 (2) (xx2−1+C)′=x2x2−1x⋅x−x2−1=x2x2−11 (3) (arctan x+x+11+C)′=x2+11−(x+1)21=(x2+1)(x+1)22x (4) (ln ∣tan x+sec x∣+C)′=tan x+sec x1⋅(sec2 x+sec xtan x)=sec x (5) (xsin x+cos x+C)′=sin x+xcos x−sin x=xcos x (6) [21ex(sin x−cos x)+C]′=21ex(sin x−cos x)+21ex(cos x+sin x)=exsin x
( 1 ) ∫ d x x 2 ; ( 2 ) ∫ x x d x ; ( 3 ) ∫ d x x ; ( 4 ) ∫ x 2 x 3 d x ; ( 5 ) ∫ d x x 2 x ; ( 6 ) ∫ x n m d x ; ( 7 ) ∫ 5 x 3 d x ; ( 8 ) ∫ ( x 2 − 3 x + 2 ) d x ; ( 9 ) ∫ d h 2 g h ( g 是常数 ) ; ( 10 ) ∫ ( x 2 + 1 ) 2 d x ; ( 11 ) ∫ ( x + 1 ) ( x 3 − 1 ) d x ; ( 12 ) ∫ ( 1 − x ) 2 x d x ; ( 13 ) ∫ ( 2 e x + 3 x ) d x ; ( 14 ) ∫ ( 3 1 + x 2 − 2 1 − x 2 ) d x ; ( 15 ) ∫ e x ( 1 − e − x x ) d x ; ( 16 ) ∫ 3 x e x d x ; ( 17 ) ∫ 2 ⋅ 3 x − 5 ⋅ 2 x 3 x d x ; ( 18 ) ∫ s e c x ( s e c x − t a n x ) d x ; ( 19 ) ∫ c o s 2 x 2 d x ; ( 20 ) ∫ d x 1 + c o s 2 x ; ( 21 ) ∫ c o s 2 x c o s x − s i n x d x ; ( 22 ) ∫ c o s 2 x c o s 2 x s i n 2 x d x ; ( 23 ) ∫ c o t 2 x d x ; ( 24 ) ∫ c o s θ ( t a n θ + s e c θ ) d θ ; ( 25 ) ∫ x 2 x 2 + 1 d x ; ( 26 ) ∫ 3 x 4 + 2 x 2 x 2 + 1 d x . (1) ∫dxx2; (2) ∫x√xdx; (3) ∫dx√x; (4) ∫x23√xdx; (5) ∫dxx2√x; (6) ∫m√xndx; (7) ∫5x3dx; (8) ∫(x2−3x+2)dx; (9) ∫dh√2gh (g是常数); (10) ∫(x2+1)2dx; (11) ∫(√x+1)(√x3−1)dx;(12) ∫(1−x)2√xdx; (13) ∫(2ex+3x)dx; (14) ∫(31+x2−2√1−x2)dx; (15) ∫ex(1−e−x√x)dx; (16) ∫3xexdx; (17) ∫2⋅3x−5⋅2x3xdx; (18) ∫sec x(sec x−tan x)dx; (19) ∫cos2x2dx; (20) ∫dx1+cos 2x; (21) ∫cos 2xcos x−sin xdx; (22) ∫cos 2xcos2 xsin2 xdx; (23) ∫cot2 xdx; (24) ∫cos θ(tan θ+sec θ)dθ; (25) ∫x2x2+1dx; (26) ∫3x4+2x2x2+1dx. (1) ∫x2dx; (2) ∫xxdx; (3) ∫xdx; (4) ∫x23xdx; (5) ∫x2xdx; (6) ∫mxndx; (7) ∫5x3dx; (8) ∫(x2−3x+2)dx; (9) ∫2ghdh (g是常数); (10) ∫(x2+1)2dx; (11) ∫(x+1)(x3−1)dx;(12) ∫x(1−x)2dx; (13) ∫(2ex+x3)dx; (14) ∫(1+x23−1−x22)dx; (15) ∫ex(1−xe−x)dx; (16) ∫3xexdx; (17) ∫3x2⋅3x−5⋅2xdx; (18) ∫sec x(sec x−tan x)dx; (19) ∫cos22xdx; (20) ∫1+cos 2xdx; (21) ∫cos x−sin xcos 2xdx; (22) ∫cos2 xsin2 xcos 2xdx; (23) ∫cot2 xdx; (24) ∫cos θ(tan θ+sec θ)dθ; (25) ∫x2+1x2dx; (26) ∫x2+13x4+2x2dx.
( 1 ) ∫ d x x 2 = ∫ x − 2 d x = x − 2 + 1 − 2 + 1 + C = − 1 x + C ( 2 ) ∫ x x d x = ∫ x 3 2 d x = x 3 2 + 1 3 2 + 1 + C = 2 5 x 5 2 + C ( 3 ) ∫ d x x = ∫ x − 1 2 d x = x − 1 2 + 1 − 1 2 + 1 + C = 2 x + C ( 4 ) ∫ x 2 x 3 d x = ∫ x 7 3 d x = x 7 3 + 1 7 3 + 1 + C = 3 10 x 10 3 + C ( 5 ) ∫ d x x 2 x = ∫ x − 5 2 d x = x − 5 2 + 1 − 5 2 + 1 + C = − 2 3 x − 3 2 + C ( 6 ) ∫ x n m d x = ∫ x n m d x = x n m + 1 n m + 1 + C = m m + n x m + n m + C ( 7 ) ∫ 5 x 3 d x = 5 x 3 + 1 3 + 1 + C = 5 4 x 4 + C ( 8 ) ∫ ( x 2 − 3 x + 2 ) d x = ∫ x 2 d x − 3 ∫ x d x + 2 ∫ d x = 1 3 x 3 − 3 2 x 2 + 2 x + C ( 9 ) ∫ d h 2 g h = 1 2 g ∫ h − 1 2 d h = 2 h g + C ( 10 ) ∫ ( x 2 + 1 ) 2 d x = ∫ ( x 4 + 2 x 2 + 1 ) d x = ∫ x 4 d x + 2 ∫ x 2 d x + ∫ d x = 1 5 x 5 + 2 3 x 3 + x + C ( 11 ) ∫ ( x + 1 ) ( x 3 − 1 ) d x = ∫ ( x 2 + x 3 2 − x 1 2 − 1 ) d x = ∫ x 2 d x + ∫ x 3 2 d x − ∫ x 1 2 d x − ∫ d x = 1 3 x 3 + 2 5 x 5 2 − 2 3 x 3 2 − x + C ( 12 ) ∫ ( 1 − x ) 2 x d x = ∫ ( x 3 2 − 2 x 1 2 + x − 1 2 ) d x = ∫ x 3 2 d x − 2 ∫ x 1 2 d x + ∫ x − 1 2 d x = 2 5 x 5 2 − 4 3 x 3 2 + 2 x 1 2 + C ( 13 ) ∫ ( 2 e x + 3 x ) d x = 2 ∫ e x d x + 3 ∫ d x x = 2 e x + 3 l n ∣ x ∣ + C ( 14 ) ∫ ( 3 1 + x 2 − 2 1 − x 2 ) d x = 3 ∫ d x 1 + x 2 − 2 ∫ d x 1 − x 2 = 3 a r c t a n x − 2 a r c s i n x + C ( 15 ) ∫ e x ( 1 − e − x x ) d x = ∫ e x d x − ∫ x − 1 2 d x = e x − 2 x 1 2 + C ( 16 ) ∫ 3 x e x d x = ∫ ( 3 e ) x d x = ( 3 e ) x l n ( 3 e ) + C = 3 x e x l n 3 + 1 + C ( 17 ) ∫ 2 ⋅ 3 x − 5 ⋅ 2 x 3 x d x = 2 ∫ d x − 5 ∫ ( 2 3 ) x d x = 2 x − 5 l n 2 3 ( 2 3 ) x + C = 2 x − 5 l n 2 − l n 3 ( 2 3 ) x + C ( 18 ) ∫ s e c x ( s e c x − t a n x ) d x = ∫ s e c 2 x d x − ∫ s e c x t a n x d x = t a n x − s e c x + C ( 19 ) ∫ c o s 2 x 2 d x = ∫ 1 + c o s x 2 d x = x + s i n x 2 + C ( 20 ) ∫ d x 1 + c o s 2 x = ∫ s e c 2 x 2 d x = 1 2 t a n x + C ( 21 ) ∫ c o s 2 x c o s x − s i n x d x = ∫ c o s 2 x − s i n 2 x c o s x − s i n x d x = s i n x − c o s x + C ( 22 ) ∫ c o s 2 x c o s 2 x s i n 2 x d x = ∫ c o s 2 x − s i n 2 x c o s 2 x s i n 2 x d x = ∫ ( c s c 2 x − s e c 2 x ) d x = ∫ c s c 2 x d x − ∫ s e c 2 x d x = − c o t x − t a n x + C ( 23 ) ∫ c o t 2 x d x = ∫ c s c 2 x d x − ∫ d x = − c o t x − x + C ( 24 ) ∫ c o s θ ( t a n θ + s e c θ ) d θ = ∫ s i n θ d θ + ∫ d θ = − c o s θ + θ + C ( 25 ) ∫ x 2 x 2 + 1 d x = ∫ d x − ∫ 1 x 2 + 1 d x = x − a r c t a n x + C ( 26 ) ∫ 3 x 4 + 2 x 2 x 2 + 1 d x = ∫ 3 x 2 d x − ∫ d x + ∫ 1 x 2 + 1 d x = x 3 − x + a r c t a n x + C (1) ∫dxx2=∫x−2dx=x−2+1−2+1+C=−1x+C (2) ∫x√xdx=∫x32dx=x32+132+1+C=25x52+C (3) ∫dx√x=∫x−12dx=x−12+1−12+1+C=2√x+C (4) ∫x23√xdx=∫x73dx=x73+173+1+C=310x103+C (5) ∫dxx2√x=∫x−52dx=x−52+1−52+1+C=−23x−32+C (6) ∫m√xndx=∫xnmdx=xnm+1nm+1+C=mm+nxm+nm+C (7) ∫5x3dx=5x3+13+1+C=54x4+C (8) ∫(x2−3x+2)dx=∫x2dx−3∫xdx+2∫dx=13x3−32x2+2x+C (9) ∫dh√2gh=1√2g∫h−12dh=√2hg+C (10) ∫(x2+1)2dx=∫(x4+2x2+1)dx=∫x4dx+2∫x2dx+∫dx=15x5+23x3+x+C (11) ∫(√x+1)(√x3−1)dx=∫(x2+x32−x12−1)dx= ∫x2dx+∫x32dx−∫x12dx−∫dx=13x3+25x52−23x32−x+C (12) ∫(1−x)2√xdx=∫(x32−2x12+x−12)dx=∫x32dx−2∫x12dx+∫x−12dx=25x52−43x32+2x12+C (13) ∫(2ex+3x)dx=2∫exdx+3∫dxx=2ex+3ln |x|+C (14) ∫(31+x2−2√1−x2)dx=3∫dx1+x2−2∫dx√1−x2=3arctan x−2arcsin x+C (15) ∫ex(1−e−x√x)dx=∫exdx−∫x−12dx=ex−2x12+C (16) ∫3xexdx=∫(3e)xdx=(3e)xln(3e)+C=3xexln 3+1+C (17) ∫2⋅3x−5⋅2x3xdx=2∫dx−5∫(23)xdx=2x−5ln 23(23)x+C=2x−5ln 2−ln 3(23)x+C (18) ∫sec x(sec x−tan x)dx=∫sec2 xdx−∫sec xtan xdx=tan x−sec x+C (19) ∫cos2x2dx=∫1+cos x2dx=x+sin x2+C (20) ∫dx1+cos 2x=∫sec2 x2dx=12tan x+C (21) ∫cos 2xcos x−sin xdx=∫cos2 x−sin2 xcos x−sin xdx=sin x−cos x+C (22) ∫cos 2xcos2 xsin2 xdx=∫cos2 x−sin2 xcos2 xsin2 xdx=∫(csc2 x−sec2 x)dx= ∫csc2 xdx−∫sec2 xdx=−cot x−tan x+C (23) ∫cot2 xdx=∫csc2 xdx−∫dx=−cot x−x+C (24) ∫cos θ(tan θ+sec θ)dθ=∫sin θdθ+∫dθ=−cos θ+θ+C (25) ∫x2x2+1dx=∫dx−∫1x2+1dx=x−arctan x+C (26) ∫3x4+2x2x2+1dx=∫3x2dx−∫dx+∫1x2+1dx=x3−x+arctan x+C (1) ∫x2dx=∫x−2dx=−2+1x−2+1+C=−x1+C (2) ∫xxdx=∫x23dx=23+1x23+1+C=52x25+C (3) ∫xdx=∫x−21dx=−21+1x−21+1+C=2x+C (4) ∫x23xdx=∫x37dx=37+1x37+1+C=103x310+C (5) ∫x2xdx=∫x−25dx=−25+1x−25+1+C=−32x−23+C (6) ∫mxndx=∫xmndx=mn+1xmn+1+C=m+nmxmm+n+C (7) ∫5x3dx=53+1x3+1+C=45x4+C (8) ∫(x2−3x+2)dx=∫x2dx−3∫xdx+2∫dx=31x3−23x2+2x+C (9) ∫2ghdh=2g1∫h−21dh=g2h+C (10) ∫(x2+1)2dx=∫(x4+2x2+1)dx=∫x4dx+2∫x2dx+∫dx=51x5+32x3+x+C (11) ∫(x+1)(x3−1)dx=∫(x2+x23−x21−1)dx= ∫x2dx+∫x23dx−∫x21dx−∫dx=31x3+52x25−32x23−x+C (12) ∫x(1−x)2dx=∫(x23−2x21+x−21)dx=∫x23dx−2∫x21dx+∫x−21dx=52x25−34x23+2x21+C (13) ∫(2ex+x3)dx=2∫exdx+3∫xdx=2ex+3ln ∣x∣+C (14) ∫(1+x23−1−x22)dx=3∫1+x2dx−2∫1−x2dx=3arctan x−2arcsin x+C (15) ∫ex(1−xe−x)dx=∫exdx−∫x−21dx=ex−2x21+C (16) ∫3xexdx=∫(3e)xdx=ln(3e)(3e)x+C=ln 3+13xex+C (17) ∫3x2⋅3x−5⋅2xdx=2∫dx−5∫(32)xdx=2x−ln 325(32)x+C=2x−ln 2−ln 35(32)x+C (18) ∫sec x(sec x−tan x)dx=∫sec2 xdx−∫sec xtan xdx=tan x−sec x+C (19) ∫cos22xdx=∫21+cos xdx=2x+sin x+C (20) ∫1+cos 2xdx=∫2sec2 xdx=21tan x+C (21) ∫cos x−sin xcos 2xdx=∫cos x−sin xcos2 x−sin2 xdx=sin x−cos x+C (22) ∫cos2 xsin2 xcos 2xdx=∫cos2 xsin2 xcos2 x−sin2 xdx=∫(csc2 x−sec2 x)dx= ∫csc2 xdx−∫sec2 xdx=−cot x−tan x+C (23) ∫cot2 xdx=∫csc2 xdx−∫dx=−cot x−x+C (24) ∫cos θ(tan θ+sec θ)dθ=∫sin θdθ+∫dθ=−cos θ+θ+C (25) ∫x2+1x2dx=∫dx−∫x2+11dx=x−arctan x+C (26) ∫x2+13x4+2x2dx=∫3x2dx−∫dx+∫x2+11dx=x3−x+arctan x+C
( 1 ) d y d x = ( x − 2 ) 2 , y ∣ x = 2 = 0 ; ( 2 ) d 2 x d y 2 = 2 t 3 , d x d t ∣ t = 1 = 1 , x ∣ t = 1 = 1. (1) dydx=(x−2)2,y|x=2=0; (2) d2xdy2=2t3,dxdt|t=1=1,x|t=1=1. (1) dxdy=(x−2)2,y∣x=2=0; (2) dy2d2x=t32,dtdx∣ ∣t=1=1,x∣t=1=1.
( 1 ) y = ∫ ( x − 2 ) 2 d x = 1 3 ( x − 2 ) 3 + C ,由 y ∣ x = 2 = 0 ,得 C = 0 ,因此, y = 1 3 ( x − 2 ) 3 . ( 2 ) d x d t = ∫ 2 t 3 d t = − 1 t 2 + C 0 ,由 d x d t ∣ t = 1 = 1 ,得 C 0 = 2 ,因此, d x d t = − 1 t 2 + 2 , x = ∫ ( − 1 t 2 + 2 ) d t = 1 t + 2 t + C 1 ,由 x ∣ t = 1 = 1 ,得 C 1 = − 2 ,因此, x = 1 t + 2 t − 2. (1) y=∫(x−2)2dx=13(x−2)3+C,由y|x=2=0,得C=0,因此,y=13(x−2)3. (2) dxdt=∫2t3dt=−1t2+C0,由dxdt|t=1=1,得C0=2,因此,dxdt=−1t2+2, x=∫(−1t2+2)dt=1t+2t+C1,由x|t=1=1,得C1=−2,因此,x=1t+2t−2. (1) y=∫(x−2)2dx=31(x−2)3+C,由y∣x=2=0,得C=0,因此,y=31(x−2)3. (2) dtdx=∫t32dt=−t21+C0,由dtdx∣ ∣t=1=1,得C0=2,因此,dtdx=−t21+2, x=∫(−t21+2)dt=t1+2t+C1,由x∣t=1=1,得C1=−2,因此,x=t1+2t−2.
( 1 ) 求微分方程 d 2 s d t 2 = − k 满足条件 d s d t ∣ t = 0 = 20 及 s ∣ t = 0 = 0 的解; ( 2 ) 求使 d s d t = 0 的 t 值及相应的 s 值; ( 3 ) 求使 s = 50 的 k 值。 (1) 求微分方程d2sdt2=−k满足条件dsdt|t=0=20及s|t=0=0的解; (2) 求使dsdt=0的t值及相应的s值; (3) 求使s=50的k值。 (1) 求微分方程dt2d2s=−k满足条件dtds∣ ∣t=0=20及s∣t=0=0的解; (2) 求使dtds=0的t值及相应的s值; (3) 求使s=50的k值。
( 1 ) d s d t = ∫ − k d t = − k t + C 0 ,由 d s d t ∣ t = 0 = 20 ,得 C 0 = 20 ,因此, d s d t = − k t + 20 , s = ∫ ( − k t + 20 ) d t = − 1 2 k t 2 + 20 t + C 1 ,由 s ∣ t = 0 = 0 ,得 C 1 = 0 ,因此, s = − 1 2 k t 2 + 20 t . ( 2 ) 令 d s d t = 0 ,得 t = 20 k . ( 3 ) 当 t = 20 k 时, s = 50 ,即 − 1 2 k ( 20 k ) 2 + 400 k = 50 ,得 k = 4 ,因此,刹车加速度为 − 4 m / s 2 . (1) dsdt=∫−kdt=−kt+C0,由dsdt|t=0=20,得C0=20,因此,dsdt=−kt+20, s=∫(−kt+20)dt=−12kt2+20t+C1,由s|t=0=0,得C1=0,因此,s=−12kt2+20t. (2) 令dsdt=0,得t=20k. (3) 当t=20k时,s=50,即−12k(20k)2+400k=50,得k=4,因此,刹车加速度为−4m/s2. (1) dtds=∫−kdt=−kt+C0,由dtds∣ ∣t=0=20,得C0=20,因此,dtds=−kt+20, s=∫(−kt+20)dt=−21kt2+20t+C1,由s∣t=0=0,得C1=0,因此,s=−21kt2+20t. (2) 令dtds=0,得t=k20. (3) 当t=k20时,s=50,即−21k(k20)2+k400=50,得k=4,因此,刹车加速度为−4m/s2.
设曲线方程为 y = f ( x ) ,则点 ( x , y ) 处的切线斜率为 f ′ ( x ) ,且 f ′ ( x ) = 1 x ,因此, f ( x ) = ∫ 1 x d x = l n ∣ x ∣ + C , 又因曲线过点 ( e 2 , 3 ) ,有 f ( e 2 ) = l n ∣ e 2 ∣ + C = 3 ,得 C = 1 ,则曲线方程为 y = l n x + 1 设曲线方程为y=f(x),则点(x, y)处的切线斜率为f′(x),且f′(x)=1x,因此,f(x)=∫1xdx=ln |x|+C, 又因曲线过点(e2, 3),有f(e2)=ln |e2|+C=3,得C=1,则曲线方程为y=ln x+1 设曲线方程为y=f(x),则点(x, y)处的切线斜率为f′(x),且f′(x)=x1,因此,f(x)=∫x1dx=ln ∣x∣+C, 又因曲线过点(e2, 3),有f(e2)=ln ∣e2∣+C=3,得C=1,则曲线方程为y=ln x+1
( 1 ) 在 3 s 后物体离开出发点的距离是多少? ( 2 ) 物体走完 360 m 需要多少时间? (1) 在3s后物体离开出发点的距离是多少? (2) 物体走完360m需要多少时间? (1) 在3s后物体离开出发点的距离是多少? (2) 物体走完360m需要多少时间?
( 1 ) 设物体自原点沿横轴正向由静止开始运动,移动函数为 s = s ( t ) ,则 s ( t ) = ∫ v ( t ) d t = ∫ 3 t 2 d t = t 3 + C , 由于 s ( 0 ) = 0 ,所以 s ( t ) = t 3 ,则 s ( 3 ) = 27 ,所以 3 s 后物体离开出发点的距离是 27 m 。 ( 2 ) 由 t 3 = 360 ,得 t = 360 3 ≈ 7.1 ,则物体走完 360 m 需要大约 7.1 s (1) 设物体自原点沿横轴正向由静止开始运动,移动函数为s=s(t),则s(t)=∫v(t)dt=∫3t2dt=t3+C, 由于s(0)=0,所以s(t)=t3,则s(3)=27,所以3s后物体离开出发点的距离是27m。 (2) 由t3=360,得t=3√360≈7.1,则物体走完360m需要大约7.1s (1) 设物体自原点沿横轴正向由静止开始运动,移动函数为s=s(t),则s(t)=∫v(t)dt=∫3t2dt=t3+C, 由于s(0)=0,所以s(t)=t3,则s(3)=27,所以3s后物体离开出发点的距离是27m。 (2) 由t3=360,得t=3360≈7.1,则物体走完360m需要大约7.1s
[ a r c s i n ( 2 x − 1 ) ] ′ = 2 1 − ( 2 x − 1 ) 2 = 1 x − x 2 [ a r c c o s ( 1 − 2 x ) ] ′ = − − 2 1 − ( 1 − 2 x ) 2 = 1 x − x 2 ( 2 a r c t a n x 1 − x ) ′ = 2 1 1 + x 1 − x ⋅ 1 2 1 − x x ⋅ 1 ( 1 − x ) 2 = 1 x − x 2 [arcsin(2x−1)]′=2√1−(2x−1)2=1√x−x2 [arccos(1−2x)]′=−−2√1−(1−2x)2=1√x−x2 (2arctan√x1−x)′=211+x1−x⋅12√1−xx⋅1(1−x)2=1√x−x2 [arcsin(2x−1)]′=1−(2x−1)22=x−x21 [arccos(1−2x)]′=−1−(1−2x)2−2=x−x21 (2arctan1−xx)′=21+1−xx1⋅21x1−x⋅(1−x)21=x−x21