在网上看了不少与卡尔曼滤波
相关的博客、论文,要么是只谈理论、缺乏感性,或者有感性认识,缺乏理论推导。能兼顾二者的少之又少,直到我看到了国外的一篇博文,真的惊艳到我了,不得不佩服作者这种细致入微的精神,翻译过来跟大家分享一下,原文链接:http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
我不得不说说卡尔曼滤波,因为它能做到的事情简直让人惊叹!意外的是很少有软件工程师和科学家对对它有所了解,这让我感到沮丧,因为卡尔曼滤波是一个如此强大的工具,能够在不确定性中融合信息
,与此同时,它提取精确
信息的能力看起来不可思议
。
你可以在任何含有不确定信息
的动态系统中使用卡尔曼滤波
,对系统下一步的走向做出有根据的预测
,即使伴随着各种干扰,卡尔曼滤波总是能指出真实发生的情况。
在连续变化的系统中使用卡尔曼滤波是非常理想的,它具有占用内存小
的优点(除了前一个状态量外,不需要保留其它历史数据),并且速度很快
,很适合应用于实时问题和嵌入式系统
。
在Google上找到的大多数关于实现卡尔曼滤波的数学公式看起来有点晦涩难懂,这个状况有点糟糕。实际上,如果以正确的方式看待它,卡