[星期维度]日志数据提取事件关键词,解析对应日期的星期计数,matplotlib绘制统计图,python
这次把日志数据中每一行包含关键词的日期对应的星期计数,绘制统计图表
参考文:
根据星期时间统计日期总量,绘制图表,pandas,matplotlib,Python
日志数据提取事件关键词,解析对应时间点计数,matplotlib绘制统计图,python
https://zhangphil.blog.csdn.net/article/details/125923359https://zhangphil.blog.csdn.net/article/details/125923359
- from datetime import datetime
- from pprint import pp
-
- import pandas as pd
- import matplotlib
- import matplotlib.pyplot as plt
-
- from fuzzywuzzy import fuzz
- import re
-
- FILE_PATH = r'源数据路径'
- KEY = r'模糊匹配的关键词' # 关键词1,关键词2
- threshold = 80
-
- SECTION = 'section'
- SUM = 'sum'
-
-
- def drawchart(df):
- myfont = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\msyh.ttc')
- plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
- plt.rc('font', family='YaHei', weight='bold')
-
- order = []
- name = []
- mem = []
- for d, i in zip(df.values, df.index):
- order.append(i)
- name.append(d[0])
- mem.append(int(d[1]))
-
- FONT_SIZE = 12
-
- fig, ax = plt.subplots(figsize=(15, 13))
-
- b = ax.barh(y=range(len(name)), width=mem, align='center', color='red')
-
- # 为横向水平的柱图右侧添加数据标签。
- i = 0
- for rect in b:
- w = rect.get_width()
- ax.text(x=w, y=rect.get_y() + rect.get_height() / 2, s='%d' % (int(w)),
- horizontalalignment='left', verticalalignment='center',
- fontproperties=myfont, fontsize=FONT_SIZE - 2, color='green')
- ax.text(x=w / 2, y=rect.get_y() + rect.get_height() / 2, s=str(order[i]),
- horizontalalignment='center', verticalalignment='center',
- fontproperties=myfont, fontsize=FONT_SIZE - 3, color='white')
- i = i + 1
-
- ax.set_yticks(range(len(name)))
- ax.set_yticklabels(name, fontsize=FONT_SIZE - 1, fontproperties=myfont)
-
- ax.invert_yaxis()
-
- ax.set_xlabel('数据', fontsize=FONT_SIZE + 2, fontproperties=myfont)
- ax.set_title('不同星期日数据点总量排名', fontsize=FONT_SIZE + 3, fontproperties=myfont)
-
- # 不要横坐标上的label标签。
- plt.xticks(())
-
- # 清除四周的边框线
- ax.get_yaxis().set_visible(True)
- for spine in ["left", "top", "right", "bottom"]:
- ax.spines[spine].set_visible(False)
-
- plt.subplots_adjust(left=0.15) # 调整左侧边距
-
- # ax.margins(y=0.01) #缩放 zoom in
-
- ax.set_aspect('auto')
-
- plt.show()
-
-
- def read_file():
- file = open(FILE_PATH, 'r', encoding='UTF-8')
-
- all_case_time = []
-
- case_count = 1
- cnt = 1
- for line in file:
- pr = fuzz.partial_ratio(line, KEY)
-
- if pr >= threshold:
- print('-----')
- print(f'第{case_count}件')
- case_count = case_count + 1
-
- try:
- # 正则匹配 xxxx年xx月xx日xx时xx分
- mat = re.search(r'\d{4}\年\d{1,2}\月\d{1,2}\日\d{1,2}\时\d{1,2}\分', line)
- t_str = mat.group().replace('\n', '') # 去掉正则匹配到但是多余的 \n 换行符
-
- try:
- object_t = datetime.strptime(t_str, "%Y年%m月%d日%H时%M分")
- all_case_time.append(object_t.date()) # 日期提取出来,放到数组中
- print(f'{object_t.date().strftime("%Y-%m-%d")} {object_t.weekday()}')
- except:
- print('解析日期失败')
- pass
- except:
- t_str = '-解析异常-'
- pass
-
- s = '第{number}行,相似度{ratio},时间{case_time}\n{content}'
- ss = s.format(number=cnt, ratio=pr, case_time=t_str, content=line)
- pp(ss)
-
- # 快速调试
- # if case_count > 100:
- # break
-
- cnt = cnt + 1
-
- file.close()
-
- return all_case_time
-
-
- def data_frame():
- ts = read_file()
-
- times = []
- for i in range(7):
- times.append({SECTION: i, SUM: 0})
-
- for t in ts:
- for tx in times:
- if tx[SECTION] == t.weekday():
- tx[SUM] = tx[SUM] + 1
- break
-
- return times
-
-
- def number_to_weekday(number):
- zh = ['一', '二', '三', '四', '五', '六', '日']
- weekday = f'星期{zh[number]}'
- return weekday
-
-
- if __name__ == '__main__':
- times = data_frame()
-
- # 数据组装成pandas数据帧。
- pd_data = []
- for t in times:
- l = [number_to_weekday(t[SECTION]), t[SUM]]
- pd_data.append(l)
-
- col = ['星期', '次数']
- df = pd.DataFrame(data=pd_data, columns=col)
- df = df.sort_values(by=col[1], axis=0, ascending=False) # 降序
-
- # 重置索引
- df = df.reset_index(drop=True)
- df.index = df.index + 1
-
- # 前10名
- pp(df.head(20))
- # pp(df.values)
-
- drawchart(df)
变换不同关键词,得出的统计图: