• numpy.isclose


    参考  numpy.isclose - 云+社区 - 腾讯云

    numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)[source]

    Returns a boolean array where two arrays are element-wise equal within a tolerance.

    The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the absolute difference atol are added together to compare against the absolute difference between a and b.

    Warning:The default atol is not appropriate for comparing numbers that are much smaller than one (see Notes).

    Parameters:

    a, b:array_like

    Input arrays to compare.

    rtol:float

    The relative tolerance parameter (see Notes).

    atol:float

    The absolute tolerance parameter (see Notes).

    equal_nan:bool

    Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to NaN’s in b in the output array.

    Returns

    y:array_like

    Returns a boolean array of where a and b are equal within the given tolerance. If both a and b are scalars, returns a single boolean value.

    See also

    allclose

    Notes

    New in version 1.7.0.

    For finite values, isclose uses the following equation to test whether two floating point values are equivalent.

    absolute(a - b) <= (atol + rtol * absolute(b))

    Unlike the built-in math.isclose, the above equation is not symmetric in a and b – it assumes b is the reference value – so that isclose(a, b) might be different from isclose(b, a). Furthermore, the default value of atol is not zero, and is used to determine what small values should be considered close to zero. The default value is appropriate for expected values of order unity: if the expected values are significantly smaller than one, it can result in false positives. atol should be carefully selected for the use case at hand. A zero value for atol will result in False if either a or b is zero.

    Examples

    1. >>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
    2. array([ True, False])
    3. >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
    4. array([ True, True])
    5. >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
    6. array([False, True])
    7. >>> np.isclose([1.0, np.nan], [1.0, np.nan])
    8. array([ True, False])
    9. >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
    10. array([ True, True])
    11. >>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
    12. array([ True, False])
    13. >>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
    14. array([False, False])
    15. >>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
    16. array([ True, True])
    17. >>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
    18. array([False, True])

  • 相关阅读:
    实体店做商城小程序如何
    “极致成本向左,本质安全向右”-谈谈锂电池储能系统的发展趋势
    我与java的第一次相识
    工作整理日志
    C++生成-1到1的随机数
    人工神经网络分为哪两类,人工神经网络包括哪些
    System.out.println(“我的创作纪念日 - 三周年“);
    vue大型电商项目尚品汇(前台篇)day05终结篇
    置业小技能:按揭相关事项
    【Python】封装、继承、多态(21)
  • 原文地址:https://blog.csdn.net/weixin_36670529/article/details/102457192