• Flink SQL搭建实时数仓DWD层


    1.实时数仓DWD层

    DWD是明细数据层,该层的表结构和粒度与原始表保持一致,不过需要对ODS层数据进行清洗、维度退化、脱敏等,最终得到的数据是干净的,完整的、一致的数据。

    (1)对用户行为数据解析。

    (2)对核心数据进行空值过滤。

    (3)对业务数据采集维度模型重新建模,即维度退化。

    2.基于车辆出行的维度建模

    3.基于Flink SQL搭建实时数仓DWD层

    package com.bigdata.warehouse.dwd;

    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.table.api.Table;import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;public class DwdCarsLog {    public static void main(String[] args) {
                //1.获取Stream的执行环境StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();            //设置并行度            //senv.setParallelism(1);            //开启checkpoint容错//senv.enableCheckpointing(60000);//senv.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);//senv.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);//senv.getCheckpointConfig().setCheckpointTimeout(10000);//senv.getCheckpointConfig().setMaxConcurrentCheckpoints(1);            //设置状态后端            //(1)开启RocksDB            //senv.setStateBackend(new EmbeddedRocksDBStateBackend());            //(2)设置checkpoint 存储            //senv.getCheckpointConfig().setCheckpointStorage(new FileSystemCheckpointStorage("hdfs://mycluster/flink/checkpoints"));            //2.创建表执行环境            StreamTableEnvironment tEnv = StreamTableEnvironment.create(senv);            //3.读取车辆进出事实表         tEnv.executeSql("CREATE TABLE ods_cars_log (" +                "  id STRING," +                "  opTime STRING," +                "  ctype SMALLINT," +                "  carCode STRING," +                "  cId BIGINT," +                "  proc_time as PROCTIME() "+                ") WITH (" +                "  'connector' = 'kafka'," +                "  'topic' = 'ods_cars_log'," +                "  'properties.bootstrap.servers' = 'hadoop1:9092'," +                "  'properties.group.id' = 'ods_cars_log'," +                "  'scan.startup.mode' = 'earliest-offset'," +                "  'format' = 'json'" +                ")");
                //4.读取车辆维度表            tEnv.executeSql("CREATE TABLE dim_base_cars ( " +                "  id INT, " +                "  owerId INT, " +                "  carCode STRING, " +                "  carColor STRING, " +                "  type TINYINT, " +                "  remark STRING, " +                "  PRIMARY KEY(id) NOT ENFORCED " +                ") WITH ( " +                "  'connector' = 'jdbc', " +                "  'url' = 'jdbc:mysql://hadoop1:3306/sca?useUnicode=true&characterEncoding=utf8', " +                "  'table-name' = 'dim_base_cars', " +                "  'username' = 'hive', " +                "  'password' = 'hive' " +                ")");
                //5.关联事实表与维度表获取车辆进出明细表            Table resultTable = tEnv.sqlQuery("select " +                "cl.id, " +                "c.owerId, " +                "cl.opTime, " +                "cl.cId, " +                "cl.carCode, " +                "cl.ctype " +                "from ods_cars_log cl " +                "left join dim_base_cars for system_time as of cl.proc_time as c " +                "on cl.carCode=c.carCode");            tEnv.createTemporaryView("resultTable",resultTable);
                //6.创建dwd_cars_log表            tEnv.executeSql("CREATE TABLE dwd_cars_log ( " +                " id STRING, " +                " owerId INT, " +                " opTime STRING, " +                " cId BIGINT, " +                " carCode STRING, " +                " ctype SMALLINT, " +                " PRIMARY KEY (id) NOT ENFORCED " +                ") WITH ( " +                " 'connector' = 'upsert-kafka', " +                " 'topic' = 'dwd_cars_log', " +                " 'properties.bootstrap.servers' = 'hadoop1:9092', " +                " 'key.format' = 'json', " +                " 'value.format' = 'json' " +                ")");
                //7.将关联结果写入dwd_cars_log表            tEnv.executeSql("insert into dwd_cars_log select * from resultTable");    }}

    4.基于Kafka创建DWD层topic

    #创建kafka topic

    bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic dwd_cars_log --replication-factor 3 --partitions 1

    5.查看实时数仓DWD层结果

    #消费kafka topic

    bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic dwd_cars_log --from-beginning

    如果控制台打印预期结果,说明实时数仓DWD层搭建成功。

    {"id":"3bfe7e59-4771-4aa8-ab90-80c98010c4ea","owerId":10022759,"opTime":"2022-07-15 11:59:55.443","cId":10000095,"carCode":"青I·PY2MR","ctype":2}

    {"id":"36208b62-739b-4eea-abf4-9f26b85b85d1","owerId":10075672,"opTime":"2022-07-15 11:59:56.443","cId":10000311,"carCode":"渝Z·C0AFY","ctype":1}{"id":"2a5df539-4668-4a42-8013-978b82b3c318","owerId":10126156,"opTime":"2022-07-15 11:59:57.443","cId":10000526,"carCode":"晋B·1RPVV","ctype":1}{"id":"2bd0ce39-1c39-4db5-9376-68e297fda4b0","owerId":10206773,"opTime":"2022-07-15 11:59:58.443","cId":10000843,"carCode":"冀D·FX3IJ","ctype":2}{"id":"2959544d-53f9-43e4-9101-96629fecdcc6","owerId":10153485,"opTime":"2022-07-15 11:59:59.443","cId":10000631,"carCode":"晋D·8OWIR","ctype":2}{"id":"2fd665f9-ea27-44fd-a8cd-1f204ab2d5fc","owerId":10152560,"opTime":"2022-07-15 12:00:00.099","cId":10000627,"carCode":"贵A·MVO77","ctype":2}{"id":"3c283bc5-5616-43cf-87b2-c94396ced64f","owerId":10103872,"opTime":"2022-07-15 12:00:01.037","cId":10000425,"carCode":"辽L·3C5DU","ctype":1}{"id":"3634862d-c824-4829-a017-0082b7514471","owerId":10234908,"opTime":"2022-07-15 12:00:02.376","cId":10000961,"carCode":"沪T·QNNXP","ctype":1}{"id":"2b4a4d0f-4441-4e75-8437-008dfea5c03c","owerId":10228881,"opTime":"2022-07-15 12:00:03.33","cId":10000938,"carCode":"闽E·GZKRQ","ctype":2}{"id":"2ce336bc-2b31-4089-ae85-a76921c6a306","owerId":10144509,"opTime":"2022-07-15 12:00:04.819","cId":10000596,"carCode

  • 相关阅读:
    js几种常见的遍历方式
    Linux内核分析(十四)--内存管理之malloc、free 实现原理
    终端变革和6G突破:对6G终端的研究判断和发展展望
    MyBatis-Plus-入门操作(1)
    [LeetCode/力扣][Java] 0946. 验证栈序列(Validate Stack Sequences)
    【MySQL基本查询(下)】
    41. set()函数:将可迭代对象转换为可变集合
    使用 shell 脚本: 关闭特定进程
    牛客网项目——项目开发(三):开发登录模块
    日期格式化 YYYY-MM-DD 出现时间偏移量
  • 原文地址:https://blog.csdn.net/dajiangtai007/article/details/126106575