• numpy.unique


    参考   numpy.unique - 云+社区 - 腾讯云

    numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)[source]

    Find the unique elements of an array.Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements:

    • the indices of the input array that give the unique values

    • the indices of the unique array that reconstruct the input array

    • the number of times each unique value comes up in the input array

    Parameters

    ararray_like

    Input array. Unless axis is specified, this will be flattened if it is not already 1-D.

    return_indexbool, optional

    If True, also return the indices of ar (along the specified axis, if provided, or in the flattened array) that result in the unique array.

    return_inversebool, optional

    If True, also return the indices of the unique array (for the specified axis, if provided) that can be used to reconstruct ar.

    return_countsbool, optional

    If True, also return the number of times each unique item appears in ar.

    New in version 1.9.0.

    axisint or None, optional

    The axis to operate on. If None, ar will be flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array with the dimension of the given axis, see the notes for more details. Object arrays or structured arrays that contain objects are not supported if the axis kwarg is used. The default is None.

    New in version 1.13.0.

    Returns

    uniquendarray

    The sorted unique values.

    unique_indicesndarray, optional

    The indices of the first occurrences of the unique values in the original array. Only provided if return_index is True.

    unique_inversendarray, optional

    The indices to reconstruct the original array from the unique array. Only provided if return_inverse is True.

    unique_countsndarray, optional

    The number of times each of the unique values comes up in the original array. Only provided if return_counts is True.

    New in version 1.9.0.

    See also

    numpy.lib.arraysetops

    Module with a number of other functions for performing set operations on arrays.

    Notes

    When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis the first dimension of the array (move the axis to the first dimension to keep the order of the other axes) and then flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with the first element.

    Examples

    1. >>> np.unique([1, 1, 2, 2, 3, 3])
    2. array([1, 2, 3])
    3. >>> a = np.array([[1, 1], [2, 3]])
    4. >>> np.unique(a)
    5. array([1, 2, 3])

    Return the unique rows of a 2D array

    1. >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
    2. >>> np.unique(a, axis=0)
    3. array([[1, 0, 0], [2, 3, 4]])

    Return the indices of the original array that give the unique values:

    1. >>> a = np.array(['a', 'b', 'b', 'c', 'a'])
    2. >>> u, indices = np.unique(a, return_index=True)
    3. >>> u
    4. array(['a', 'b', 'c'], dtype=')
    5. >>> indices
    6. array([0, 1, 3])
    7. >>> a[indices]
    8. array(['a', 'b', 'c'], dtype=')

    Reconstruct the input array from the unique values:

    1. >>> a = np.array([1, 2, 6, 4, 2, 3, 2])
    2. >>> u, indices = np.unique(a, return_inverse=True)
    3. >>> u
    4. array([1, 2, 3, 4, 6])
    5. >>> indices
    6. array([0, 1, 4, ..., 1, 2, 1])
    7. >>> u[indices]
    8. array([1, 2, 6, ..., 2, 3, 2])

  • 相关阅读:
    业务安全及案例实战
    MAX3072EESA+T RS-485/RS-422半双工收发器
    java计算机毕业设计ssm民宿管理系统设计7lky4(附源码、数据库)
    C#在winform 控制台输出 cmd窗口
    python利用BUG让它免费啦~你在不知道就要后悔啦~
    【超级详细的Vue安装与配置教程】
    ROS+Gazebo+PX4(关系,配置资料)
    Socket
    python --opencv图像处理轮廓(寻找轮廓、绘制轮廓)详解
    聚丙烯酸(PAA)修饰纳米Fe3O4四氧化三铁粒子|CNTs/Fe3O4/TiO2纳米复合材料(齐岳)
  • 原文地址:https://blog.csdn.net/weixin_36670529/article/details/102456317