摘要: 在实际工业过程中,故障数据通常具有较强的非线性特征,并且非线性特征的种类也较为多样.现有的基于核策略的过程监测方法中,通常只使用一种核函数进行故障的非线性特征提取,很难对非线性特征进行较为全面地刻画,因此单种核函数的过程监测方法对不同故障的分类效果十分有限.此外,常规核方法中的核参数通常由经验确定,难以取得最优的特征提取结果.为了解决此问题,本文提出一种优化的多核局部费舍尔判别分析(OMKLFDA)模型,首先,通过权重系数将多个核函数集成至局部费舍尔判别分析(LFDA)模型中,从而能够提取故障的多种非线性特征.其次,通过改进的粒子群优化算法为故障分类模型选择最优的核参数和权重系