题意
给定一个正整数 w w w 及 w w w 个数 c 0 , c 1 , ⋯ , c w − 1 c_0, c_1, \cdots,c_{w - 1} c0,c1,⋯,cw−1
q q q 组询问,每次询问给定一个正整数 n n n,计算有多少个长度为 n n n 的字符串满足:
对 998 244 353 998 \, 244 \, 353 998244353 取模。
2 ≤ w ≤ 10 , 1 ≤ c i ≤ 5 × 1 0 4 , ∑ i = 0 w − 1 c i ≤ 5 × 1 0 4 2 \le w \le 10, 1 \le c_i \le 5 \times 10 ^ 4, \sum\limits_{i = 0} ^ {w - 1}c_i \le 5 \times 10 ^ 4 2≤w≤10,1≤ci≤5×104,i=0∑w−1ci≤5×104
1 ≤ q ≤ 300 , 1 ≤ n ≤ 1 0 7 1 \le q \le 300, 1 \le n \le 10 ^ 7 1≤q≤300,1≤n≤107
分析:
首先我们可以写出每个数字
i
i
i 的
EGF
\textbf{EGF}
EGF
∑
j
=
c
i
∞
x
j
j
!
\sum_{j = c_i} ^ {\infty} \frac{x ^ j}{j!}
j=ci∑∞j!xj
那么每个数字的
EGF
\textbf{EGF}
EGF 做乘积表示满足条件的所有长度的字符串的方案数
∏
i
=
0
w
−
1
∑
j
=
c
i
∞
x
j
j
!
\prod_{i = 0} ^ {w - 1}\sum_{j = c_i} ^ {\infty} \frac{x ^ j}{j!}
i=0∏w−1j=ci∑∞j!xj
可以把和式用前缀和相减拆一下
∑
j
=
c
i
∞
x
j
j
!
=
∑
j
=
0
∞
x
j
j
!
−
∑
j
=
0
c
i
−
1
x
j
j
!
\sum\limits_{j = c_i} ^ {\infty} \dfrac{x ^ j}{j!} = \sum\limits_{j = 0} ^ {\infty} \dfrac{x ^ j}{j!} - \sum\limits_{j = 0} ^ {c_i - 1} \dfrac{x ^ j}{j!}
j=ci∑∞j!xj=j=0∑∞j!xj−j=0∑ci−1j!xj,发现第一项为
e
x
e ^ x
ex,故答案为
∏
i
=
0
w
−
1
(
e
x
−
∑
j
=
0
c
i
−
1
x
j
j
!
)
\prod_{i = 0} ^ {w - 1}(e ^ x - \sum_{j = 0} ^ {c_i - 1} \frac{x ^ j}{j!})
i=0∏w−1(ex−j=0∑ci−1j!xj)
由于
w
≤
10
w \le 10
w≤10,所以考虑暴力展开式子,做换元
e
x
→
y
e ^ x \rightarrow y
ex→y
在展开式子的过程中,假设当前的多项式为
f
=
A
0
+
A
1
y
+
A
2
y
2
+
A
3
y
3
+
⋯
f = A_0 + A_1 y + A_2y ^ 2 + A_3y^3 + \cdots
f=A0+A1y+A2y2+A3y3+⋯,那么新遇到一个多项式
(
y
+
g
i
)
(y + g_i)
(y+gi) 其中
g
i
=
−
∑
j
=
0
c
i
−
1
x
j
j
!
g_i = -\sum\limits_{j = 0} ^ {c_i - 1} \dfrac{x ^ j}{j!}
gi=−j=0∑ci−1j!xj, 则结果变为
f
∗
y
+
f
∗
g
i
f * y + f * g_i
f∗y+f∗gi (
∗
*
∗ 表示多项式卷积),前一项为
A
0
y
+
A
1
y
2
+
A
2
y
3
+
A
3
y
4
+
⋯
A_0y + A_1 y ^ 2 + A_2y ^ 3 + A_3y^4 + \cdots
A0y+A1y2+A2y3+A3y4+⋯,那么后一项是
f
f
f 的每一项系数与
g
i
g_i
gi 的多项式卷积,为
A
0
∗
g
i
+
(
A
1
∗
g
i
)
y
+
(
A
2
∗
g
i
)
y
2
+
(
A
3
∗
g
i
)
y
3
+
⋯
A_0 * g_i + (A_1 * g_i) y + (A_2 * g_i)y ^ 2 + (A_3 * g_i)y^3 + \cdots
A0∗gi+(A1∗gi)y+(A2∗gi)y2+(A3∗gi)y3+⋯,那么答案就为
A
0
∗
g
i
+
(
A
0
+
A
1
∗
g
i
)
y
+
(
A
1
+
A
2
∗
g
i
)
y
2
+
(
A
2
+
A
3
∗
g
i
)
y
3
+
⋯
A_0 * g_i + (A_0 + A_1 * g_i)y + (A_1 + A_2*g_i)y ^ 2 + (A_2 + A_3*g_i)y ^ 3 + \cdots
A0∗gi+(A0+A1∗gi)y+(A1+A2∗gi)y2+(A2+A3∗gi)y3+⋯
这样就预处理好了总答案,现考虑回答每组询问,我们知道最后的答案是形如
∑
i
=
0
w
−
1
e
i
x
F
i
(
x
)
\sum\limits_{i = 0} ^ {w - 1} e ^ {ix} F_i(x)
i=0∑w−1eixFi(x) 的多项式,我们需要知道每一项的第
n
n
n 项系数,由于
∑
i
=
0
w
−
1
c
i
≤
5
×
1
0
4
\sum\limits_{i = 0} ^ {w - 1}c_i \le 5 \times 10 ^ 4
i=0∑w−1ci≤5×104,我们可以在询问里对于每个
i
i
i 直接枚举
F
i
(
x
)
F_i(x)
Fi(x) 的项数,设当前枚举到了第
j
j
j 项,那么需要在
e
i
x
e ^ {ix}
eix 中取出第
n
−
j
n - j
n−j 项,也就是
e
i
x
=
1
+
(
i
x
)
1
1
!
+
(
i
x
)
2
2
!
+
(
i
x
)
3
3
!
+
⋯
e ^ {ix} = 1 + \dfrac{(ix) ^ 1}{1!} + \dfrac{(ix) ^ 2}{2!} + \dfrac{(ix) ^ 3}{3!} + \cdots
eix=1+1!(ix)1+2!(ix)2+3!(ix)3+⋯ 的第
n
−
j
n - j
n−j 项,为
i
n
−
j
(
n
−
j
)
!
\dfrac{i ^ {n - j}}{(n - j)!}
(n−j)!in−j
那么答案就为
n
!
×
∑
i
=
0
w
∑
j
=
0
min
(
n
,
∣
F
i
(
x
)
∣
)
[
x
j
]
F
i
(
x
)
×
i
n
−
j
(
n
−
j
)
!
n! \times \sum_{i = 0} ^ {w} \sum_{j = 0} ^ {\min(n, |F_i(x)|)} [x ^ j] F_i(x) \times \frac{i ^ {n - j}}{(n - j)!}
n!×i=0∑wj=0∑min(n,∣Fi(x)∣)[xj]Fi(x)×(n−j)!in−j
#include
using namespace std;
using i64 = long long;
constexpr int mod = 998244353;
int norm(int x) {
if (x < 0) {
x += mod;
}
if (x >= mod) {
x -= mod;
}
return x;
}
template<class T>
T power(T a, int b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
struct Z {
int x;
Z(int x = 0) : x(norm(x)) {}
int val() const {
return x;
}
Z operator-() const {
return Z(norm(mod - x));
}
Z inv() const {
assert(x != 0);
return power(*this, mod - 2);
}
Z &operator*=(const Z &rhs) {
x = i64(x) * rhs.x % mod;
return *this;
}
Z &operator+=(const Z &rhs) {
x = norm(x + rhs.x);
return *this;
}
Z &operator-=(const Z &rhs) {
x = norm(x - rhs.x);
return *this;
}
Z &operator/=(const Z &rhs) {
return *this *= rhs.inv();
}
friend Z operator*(const Z &lhs, const Z &rhs) {
Z res = lhs;
res *= rhs;
return res;
}
friend Z operator+(const Z &lhs, const Z &rhs) {
Z res = lhs;
res += rhs;
return res;
}
friend Z operator-(const Z &lhs, const Z &rhs) {
Z res = lhs;
res -= rhs;
return res;
}
friend Z operator/(const Z &lhs, const Z &rhs) {
Z res = lhs;
res /= rhs;
return res;
}
friend istream &operator>>(istream &is, Z &a) {
i64 v;
is >> v;
a = Z(v);
return is;
}
friend ostream &operator<<(ostream &os, const Z &a) {
return os << a.val();
}
};
vector<int> rev;
vector<Z> roots{0, 1};
void dft(vector<Z> &a) {
int n = a.size();
if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i ++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}
for (int i = 0; i < n; i ++) {
if (rev[i] < i) {
swap(a[i], a[rev[i]]);
}
}
if (int(roots.size()) < n) {
int k = __builtin_ctz(roots.size());
roots.resize(n);
while ((1 << k) < n) {
Z e = power(Z(3), (mod - 1) >> (k + 1));
for (int i = 1 << (k - 1); i < (1 << k); i ++) {
roots[i << 1] = roots[i];
roots[i << 1 | 1] = roots[i] * e;
}
k ++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j ++) {
Z u = a[i + j], v = a[i + j + k] * roots[k + j];
a[i + j] = u + v, a[i + j + k] = u - v;
}
}
}
}
void idft(vector<Z> &a) {
int n = a.size();
reverse(a.begin() + 1, a.end());
dft(a);
Z inv = (1 - mod) / n;
for (int i = 0; i < n; i ++) {
a[i] *= inv;
}
}
struct Poly {
vector<Z> a;
Poly() {}
Poly(const vector<Z> &a) : a(a) {}
Poly(const initializer_list<Z> &a) : a(a) {}
int size() const {
return a.size();
}
void resize(int n) {
a.resize(n);
}
Z operator[](int idx) const {
if (idx < size()) {
return a[idx];
} else {
return 0;
}
}
Z &operator[](int idx) {
return a[idx];
}
Poly mulxk(int k) const {
auto b = a;
b.insert(b.begin(), k, 0);
return Poly(b);
}
Poly modxk(int k) const {
k = min(k, size());
return Poly(vector<Z>(a.begin(), a.begin() + k));
}
Poly divxk(int k) const {
if (size() <= k) {
return Poly();
}
return Poly(vector<Z>(a.begin() + k, a.end()));
}
friend Poly operator+(const Poly &a, const Poly &b) {
vector<Z> res(max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i ++) {
res[i] = a[i] + b[i];
}
return Poly(res);
}
friend Poly operator-(const Poly &a, const Poly &b) {
vector<Z> res(max(a.size(), b.size()));
for (int i = 0; i < int(res.size()); i ++) {
res[i] = a[i] - b[i];
}
return Poly(res);
}
friend Poly operator*(Poly a, Poly b) {
if (a.size() == 0 || b.size() == 0) {
return Poly();
}
int sz = 1, tot = a.size() + b.size() - 1;
while (sz < tot) {
sz *= 2;
}
a.a.resize(sz);
b.a.resize(sz);
dft(a.a);
dft(b.a);
for (int i = 0; i < sz; i ++) {
a.a[i] = a[i] * b[i];
}
idft(a.a);
a.resize(tot);
return a;
}
friend Poly operator*(Z a, Poly b) {
for (int i = 0; i < int(b.size()); i ++) {
b[i] *= a;
}
return b;
}
friend Poly operator*(Poly a, Z b) {
for (int i = 0; i < int(a.size()); i ++) {
a[i] *= b;
}
return a;
}
Poly &operator+=(Poly b) {
return (*this) = (*this) + b;
}
Poly &operator-=(Poly b) {
return (*this) = (*this) - b;
}
Poly &operator*=(Poly b) {
return (*this) = (*this) * b;
}
Poly deriv() const {
if (a.empty()) {
return Poly();
}
vector<Z> res(size() - 1);
for (int i = 0; i < size() - 1; i ++) {
res[i] = (i + 1) * a[i + 1];
}
return Poly(res);
}
Poly integr() const {
vector<Z> res(size() + 1);
for (int i = 0; i < size(); i ++) {
res[i + 1] = a[i] / (i + 1);
}
return Poly(res);
}
Poly inv(int m) const {
Poly x{a[0].inv()};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
}
return x.modxk(m);
}
Poly log(int m) const {
return (deriv() * inv(m)).integr().modxk(m);
}
Poly exp(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
}
return x.modxk(m);
}
Poly pow(int k, int m) const {
int i = 0;
while (i < size() && a[i].val() == 0) {
i ++;
}
if (i == size() || 1LL * i * k >= m) {
return Poly(vector<Z>(m));
}
Z v = a[i];
auto f = divxk(i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
}
Poly sqrt(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((mod + 1) / 2);
}
return x.modxk(m);
}
Poly mulT(Poly b) const {
if (b.size() == 0) {
return Poly();
}
int n = b.size();
reverse(b.a.begin(), b.a.end());
return ((*this) * b).divxk(n - 1);
}
};
vector<Z> fact, infact;
void init(int n) {
fact.resize(n + 1), infact.resize(n + 1);
fact[0] = infact[0] = 1;
for (int i = 1; i <= n; i ++) {
fact[i] = fact[i - 1] * i;
}
infact[n] = fact[n].inv();
for (int i = n; i; i --) {
infact[i - 1] = infact[i] * i;
}
}
signed main() {
init(1e7);
cin.tie(0) -> sync_with_stdio(0);
int w;
cin >> w;
vector<Poly> ans(w + 1);
ans[0] = {1};
for (int i = 1; i <= w; i ++) {
int c;
cin >> c;
vector<Z> g(c);
for (int j = 0; j < c; j ++) {
g[j] = -infact[j];
}
for (int j = i; j; j --) {
ans[j] = ans[j] * Poly(g) + ans[j - 1];
}
ans[0] = ans[0] * Poly(g);
}
int m;
cin >> m;
while (m --) {
int n;
cin >> n;
Z res;
for (int i = 0; i <= w; i ++) {
int v = min(ans[i].size() - 1, n);
Z Pow = power(Z(i), n - v);
for (int j = v; ~j; j --) {
res += ans[i][j] * Pow * infact[n - j];
Pow *= i;
}
}
cout << res * fact[n] << "\n";
}
}