摘要: 动力电池荷电状态(SOC)是电动汽车电池管理系统(BMS)的一个重要技术指标,针对锂电池SOC难以精确估算的问题,提出一种基于改进灰狼算法(IGWO)优化核极限学习机(KELM)的SOC估计方法.为了克服标准GWO算法存在早熟收敛、易陷入局部最优等缺陷,算法首先采用混沌映射和反向学习策略产生初始灰狼种群,其次引入收敛因子非线性调整机制来提升算法的整体
京公网安备 11010502049817号