获取线性递推数列通项的方法有很多(参考百度百科:斐波那契数列),这里简单介绍一种容易理解的方法:待定系数法构造等比数列求特征方程,最终求得通项公式。
证明过程理解即可,实际计算起来非常简单的。
通常我们得到的递推数列是这样的形式:
目标是求的通项公式。
首先,上面的递推数列通常可以写成下面这种形式:
---------------------(式1)
也叫二阶差分式(或者叫递推式)。
为了求出一阶差分式,我们可以将原式写成如下形式:
其中,因此上式就是以为元素的等比数列,公比为。
通过移项同时可得:
与上面的式子完全等价。
两式子相减则有:
因此通项公式就求出来了:
现在需要解出x1,x2:
利用二次方程根与系数的关系,可知恰为方程的两根,注意这里的系数abc就是上面二阶差分式(式1)的系数,不用计算,可以直接拿来用。该二次方程就是原差分方程的特征方程。
求方程的根解除x1,x2后带入通项公式即可得到f(n)的表达式。
1.移项写出二阶差分式,得到系数abc,也就获得了二次方程的系数abc。
2.解出二次方程的两个根x1,x2。
3.带入f(n)的通项公式即可。
例子:
斐波那契数列,它满足,
首先写出移项到左边的二阶差分式的标准形式:,获得系数abc分别为1,-1,-1,那么差分式的特征方程就为,解得
带入通用的通项公式即可得到f(n)的通项公式:
完。
另外需要注意:该通项公式仅适用于线性的递推数列!