• 这种动态规划你见过吗——状态机动态规划之股票问题(下)


    这种动态规划你见过吗——状态机动态规划之股票问题(下)

    前言

    在前面的两篇文章这种动态规划你见过吗——状态机动态规划之股票问题(上)这种动态规划你见过吗——状态机动态规划之股票问题(中)已经谈了4道和股票问题相关的题目,详细解释了状态机动态规划和他的基本原理和应用方式。在本篇文章当中,会再介绍剩下的两道股票问题,继续深入和学习状态机动态规划

    最佳买卖股票时机含冷冻期

    题目

    给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。

    设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

    注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

    示例

    示例1:

    输入: prices = [1,2,3,0,2]
    输出: 3
    解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

    示例2:

    输入: prices = [1]
    输出: 0

    状态表示数组和状态转移方程

    和前面的题目一样首先还是需要进行状态的定义和状态转移的分析,在这个问题当中我们用一个二维数组dp[i][j]表示各种不同的状态下的收益,在这个问题当中我们有以下几个状态:

    • dp[i][0],表示在遍历到第i支股票的时候没有进行一次买入和卖出。

      • 在这个时候没有进行买入和卖出,这个时候的收益和遍历到第i-1支股票的时候没有买入和卖出的情况是一样的,他们的收益都等于0,即dp[i][0] = 0dp[i - 1][0] = 0
    • dp[i][1],表示在遍历到第i支股票的时候手中含有股票,这个情况可以由种情况转移过来:

      • 在遍历到第i-1支股票的时候手中已经存在股票了,这个时候只需要保持状态,那么在第i支股票的时候的收益和第i-1支股票的收益是相等的,即dp[i][1] = dp[i - 1][1]
      • 第二种情况就是在遍历到第i-1支股票的时候手中不存在股票,那么这个时候要想手中存在股票就需要进行买入了,那么就需要花费prices[i],那么在遍历到第i支股票的时候收益等于dp[i][1] = dp[i - 1][0] - prices[i]
      • 第三种情况是前一天是处于冷冻期(这里所谈到的冷冻期并不只是前2天卖出,导致的前一天的冷冻期,还有可能是更早之前卖出的,然后保持它的状态,相当于是冷冻期的续期,只不过在续期当中是可以进行买股票的),那么现在是可以进行买入的,即dp[i][1] = dp[i - 1][3] - prices[i],其中dp[i][3]表示遍历到第i支股票的时候处于冷冻期的收益。
      • 综合以上三种情况:

      dp[i][1]=max(dp[i1][1],max(dp[i1][0]prices[i],dp[i1][3]prices[i]))

    • dp[i][2],表示在第i支股票的时候手中不含有股票,可以转移到这个状态的状态一共有两种:

      • 在遍历到第i-1支股票的时候手中本来就不含有股票,那么我们只需要保持状态即可,即dp[i][2] = dp[i - 1][2]
      • 在遍历到第i-1支股票的时候手中含有股票,那么我们需要将这个股票进行售出,即dp[i][2] = dp[i - 1][1] + prices[i]
      • 综合以上两种情况:

      dp[i][2]=max(dp[i1][2],dp[i1][1]+prices[i])

    • dp[i][3],表示在第i支股票的时候是处在冷冻期,这个状态只能由一个状态转移过来,那就是前一天手中没有股票(因为进行卖出了),即dp[i][3] = dp[i][2]

    数组的初始化和遍历顺序

    根据上面的分析我们可以知道,在遍历到第一支股票的时候如果持有股票的话就需要进行买入,那么买入的状态dp[0][1]的值就等于-prices[0],卖出的状态收益为0,冷冻期的状态也等于0。根据状态转移方程第i行的数据依赖第i-1行,因此从前往后遍历就行。

    最大收益

    根据上文当中我们设置的状态,我们能够获取的最大的收益为dp[prices.length - 1][2], dp[prices.length - 1][3]两者当中的一个,因为最终我们要想收益最大手中肯定没有股票,而没有股票的状态有上述提到的两个状态。

    max(dp[prices.length1][2],dp[prices.length1][3])

    代码

    class Solution {
    public int maxProfit(int[] prices) {
    // dp[i][0] 表示一次买入和卖出操作都没有 这个值始终等于0,可以不用这个状态
    // 但是为了完整将这个状态留下来了
    // dp[i][1] 表示持有股票
    // dp[i][2] 表示不持有股票
    // dp[i][3] 卖出操作之后的冷冻期
    int[][] dp = new int[prices.length][4];
    dp[0][1] = -prices[0];
    for (int i = 1; i < prices.length; ++i) {
    dp[i][1] = Math.max(Math.max(dp[i - 1][1], dp[i - 1][3] - prices[i]),
    dp[i][0] - prices[i]); // 因为dp[i][0] 始终等于0 因此这里可以直接写 -prices[i] 也行
    dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
    dp[i][3] = dp[i - 1][2];
    }
    return Math.max(dp[prices.length - 1][2], dp[prices.length - 1][3]);
    }
    }

    因为dp[i][0]始终等于0,所以将所有含dp[i][0]的地方都可以删除,因此下面的代码也是正确的。

    class Solution {
    public int maxProfit(int[] prices) {
    // dp[i][0] 表示一次买入和卖出操作都没有 这个值始终等于0,可以不用这个状态
    // 但是为了完整将这个状态留下来了
    // dp[i][1] 表示持有股票
    // dp[i][2] 表示不持有股票
    // dp[i][3] 卖出操作之后的冷冻期
    int[][] dp = new int[prices.length][4];
    dp[0][1] = -prices[0];
    for (int i = 1; i < prices.length; ++i) {
    dp[i][1] = Math.max(Math.max(dp[i - 1][1], dp[i - 1][3] - prices[i]),
    -prices[i]);
    dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
    dp[i][3] = dp[i - 1][2];
    }
    return Math.max(dp[prices.length - 1][2], dp[prices.length - 1][3]);
    }
    }

    数组优化——滚动数组

    在上面的状态转移方程当中我们始终只使用了两行的数据,因此我们可以只使用一个两行的二维数组,然后进行交替使用(对i求2的余数就可以了)就可以了,代码如下:

    class Solution {
    public int maxProfit(int[] prices) {
    int[][] dp = new int[2][4];
    dp[0][1] = -prices[0];
    for (int i = 1; i < prices.length; ++i) {
    dp[i & 1][1] = Math.max(Math.max(dp[(i - 1) & 1][1], dp[(i - 1) & 1][3] - prices[i]),
    dp[i & 1][0] - prices[i]);
    dp[i & 1][2] = Math.max(dp[(i - 1) & 1][2], dp[(i - 1) & 1][1] + prices[i]);
    dp[i & 1][3] = dp[(i - 1) & 1][2];
    }
    return Math.max(dp[(prices.length - 1) & 1][2], dp[(prices.length - 1) & 1][3]);
    }
    }

    买卖股票的最佳时机含手续费

    题目

    给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

    你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

    返回获得利润的最大值。

    注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

    示例

    示例1

    输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
    输出:8
    解释:能够达到的最大利润:
    在此处买入 prices[0] = 1
    在此处卖出 prices[3] = 8
    在此处买入 prices[4] = 4
    在此处卖出 prices[5] = 9
    总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

    示例2

    输入:prices = [1,3,7,5,10,3], fee = 3
    输出:6

    状态表示数组和状态转移方程

    这道题其实和在这种动态规划你见过吗——状态机动态规划之股票问题(上)当中的第二道题很相似,唯一的区别就是这里加上了手续费,其余部分是一模一样。

    现在我们来分析一下如何进行状态的转移:

    • dp[i][0]的状态如何从第i-1的状态转移过来:

      • 如果第i-1个状态是手中不存在股票,即dp[i-1][0],那么第i个状态也没有股票,那么直接是dp[i][0] = dp[i - 1][0],因为没有进行交易。
      • 如果第i-1个状态手中存在股票,即dp[i-1][1],那么如果想在第i个状态没有股票,那么就需要将股票卖出,那么收益就为dp[i-1][1] + prices[i],即dp[i][0] = dp[i-1][1] + prices[i],但是在这个题目当中会有手续费,我们在卖出的时候需要缴纳手续费,那么我们的收益就变成dp[i][0] = dp[i-1][1] + prices[i] -fee
      • 综合上面的两种转移方式可以得到下面的转移方程:

      dp[i][0]=max(dp[i1][0],dp[i1][1]+prices[i]fee)

    • dp[i][1]的状态如何进行转移:

      • 如果第i-1个状态是手中不存在股票,即dp[i-1][0],那么我们就需要从第i-1个手中不存在股票的状态进行买入,那么dp[i][0] = dp[i - 1][0] - prices[i]
      • 如果第i-1个状态手中存在股票,即dp[i-1][1],而第i个状态有股票,因此不需要进行交易,即dp[i][1]=dp[i - 1][1]
      • 综合上面的两种转移方式可以得到下面的转移方程:

      dp[i][1]=max(dp[i1][1],dp[i1][0]prices[i]);

    • 综合上面的两个状态:

    {dp[i][0]=max(dp[i1][0],dp[i1][1]+prices[i]fee)dp[i][1]=max(dp[i1][1],dp[i1][0]prices[i]);

    代码

    class Solution {
    public int maxProfit(int[] prices, int fee) {
    int[][] dp = new int[prices.length][2];
    // dp[i][0] 表示不持有股票
    // dp[i][1] 表示持有股票
    dp[0][1] = -prices[0];
    for (int i = 1; i < prices.length; ++i) {
    dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);
    dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
    }
    return dp[prices.length - 1][0];
    }
    }

    数组优化——滚动数组

    class Solution {
    public int maxProfit(int[] prices, int fee) {
    int[][] dp = new int[2][2];
    // dp[i][0] 表示不持有股票
    // dp[i][1] 表示持有股票
    dp[0][1] = -prices[0];
    for (int i = 1; i < prices.length; ++i) {
    dp[i & 1][0] = Math.max(dp[(i - 1) & 1][0], dp[(i - 1) & 1][1] + prices[i] - fee);
    dp[i & 1][1] = Math.max(dp[(i - 1) & 1][1], dp[(i - 1) & 1][0] - prices[i]);
    }
    return dp[(prices.length - 1) & 1][0];
    }
    }

    再优化

    class Solution {
    public int maxProfit(int[] prices, int fee) {
    int[] dp = new int[2];
    // dp[0] 表示不持有股票
    // dp[1] 表示持有股票
    dp[1] = -prices[0];
    for (int i = 1; i < prices.length; ++i) {
    dp[0] = Math.max(dp[0], dp[1] + prices[i] - fee);
    dp[1] = Math.max(dp[1], dp[0] - prices[i]);
    }
    return dp[0];
    }
    }

    上面的代码优化和这种动态规划你见过吗——状态机动态规划之股票问题(中)当中的优化原理是一样的。在下面的代码当中,左边的单行数组dp[0]和dp[1]相当于二维数组当中的dp[i][0],dp[i][1],右边的单行数组dp[0]和dp[1]相当于二维数组的dp[i - 1][0]和dp[i - 1][1]

    dp[0] = Math.max(dp[0], dp[1] + prices[i] - fee);
    dp[1] = Math.max(dp[1], dp[0] - prices[i]);

    但是我们会发现上面代码的第二行会依赖dp[0],这个dp[0]是第i-1行的状态,但是dp[0]在第一行已经发生了更新,也就是说dp[0]已经更新到了第i行的状态,那么为什么结果是对的呢?我们可以根据下面三条规则进行分析:

    • 如果dp[0]取的是dp[0],也就是说dp[0] > dp[1] + prices[i] - fee ,那么dp[0]还是上一行的状态,并不影响dp[1]的结果。
    • 如果dp[0]取的是dp[1] + prices[i] - fee,但是dp[1]取的是上一行的dp[1]那么对结果也没有什么影响。
    • 如果dp[0]取的是dp[1] + prices[i] - fee而且dp[1]取的是dp[0] - prices[i],那么就有影响了,但是这一加一减其实没有意义,还单纯的需要缴纳手续费,最终dp[0] - prices[i] = dp[1] + prices[i] - fee - prices[i] = dp[1] - fee < dp[1] ,因此这个状态不会被最终的结果取到,被取到的状态肯定都是第i-1行的dp[1](因为dp[1]更大),也就是说这个状态又会转移到第二条当中,因此对最终的结果没有影响。

    总结

    在本篇文章当中主要跟大家介绍了最后两道股票问题,第一道题的状态转移还是比较复杂的,可能需要大家仔细进行体会,才能理解,尤其是关于冷冻期的状态的转换可能比较绕。本文当中的第二道题目跟之前的题目非常像,只需要在收益上减去手续费即可。相信看完这三篇文章,做完这六道题目你对状态机动态规划的基本原理已经很了解了,它和传统的动态规划最不一样的就是有很多复杂的状态之间的转换,而且一般的动态规划的题目都是多重循环,但是在状态机动态规划当中是单循环。


    更多精彩内容合集可访问项目:https://github.com/Chang-LeHung/CSCore

    关注公众号:一无是处的研究僧,了解更多计算机(Java、Python、计算机系统基础、算法与数据结构)知识。

  • 相关阅读:
    jvm06
    14_星仔带你学Java之Java编码规范、常用类
    “蔚来杯“2022牛客暑期多校训练营5,签到题KBGHFCD
    基于微信小程序驾校报名系统(微信小程序毕业设计)
    反病毒网关
    基于SSM的智慧作业试题管理系统(有报告)。Javaee项目。
    征服BAT精选《Spring 源码分析》核心,欢迎围观
    【Vue 快速入门系列】更新数据页面不渲染问题
    什么样的编辑器好用?或者适合电脑工作者的编辑器?
    操作系统-进程与线程(互斥锁,信号量,信号量实现进程同步与互斥)
  • 原文地址:https://www.cnblogs.com/Chang-LeHung/p/16529436.html