cmake_modules/FindG2O.cmake
文件,链接: https://pan.baidu.com/s/15j-IP1MNoI5_1uPIV5kLOg 提取码: i19hsphere.g2o
文件,链接: https://pan.baidu.com/s/1FyoEwOIB39oC2tUJ639d1A 提取码: m5bw#include
#include
#include
#include
#include
#include
#include
using namespace std;
/************************************************
* 本程序演示如何用g2o solver进行位姿图优化
* sphere.g2o是人工生成的一个Pose graph,我们来优化它。
* 尽管可以直接通过load函数读取整个图,但我们还是自己来实现读取代码,以期获得更深刻的理解
* 这里使用g2o/types/slam3d/中的SE3表示位姿,它实质上是四元数而非李代数.
* **********************************************/
int main(int argc, char **argv) {
if (argc != 2) {
cout << "Usage: pose_graph_g2o_SE3 sphere.g2o" << endl;
return 1;
}
ifstream fin(argv[1]);
if (!fin) {
cout << "file " << argv[1] << " does not exist." << endl;
return 1;
}
// 设定g2o
typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;
typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;
auto solver = new g2o::OptimizationAlgorithmLevenberg(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出
int vertexCnt = 0, edgeCnt = 0; // 顶点和边的数量
while (!fin.eof()) {
string name;
fin >> name;
if (name == "VERTEX_SE3:QUAT") {
// SE3 顶点
g2o::VertexSE3 *v = new g2o::VertexSE3();
int index = 0;
fin >> index;
v->setId(index);
v->read(fin);
optimizer.addVertex(v);
vertexCnt++;
if (index == 0)
v->setFixed(true);
} else if (name == "EDGE_SE3:QUAT") {
// SE3-SE3 边
g2o::EdgeSE3 *e = new g2o::EdgeSE3();
int idx1, idx2; // 关联的两个顶点
fin >> idx1 >> idx2;
e->setId(edgeCnt++);
e->setVertex(0, optimizer.vertices()[idx1]);
e->setVertex(1, optimizer.vertices()[idx2]);
e->read(fin);
optimizer.addEdge(e);
}
if (!fin.good()) break;
}
cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;
cout << "optimizing ..." << endl;
optimizer.initializeOptimization();
optimizer.optimize(30);
cout << "saving optimization results ..." << endl;
optimizer.save("result.g2o");
return 0;
}
cmake_minimum_required(VERSION 2.8)
project(pose_graph_g2o_SE3)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_STANDARD 14)
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)
# Eigen
include_directories("/usr/include/eigen3")
# sophus
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})
# g2o
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})
SET(G2O_LIBS g2o_core g2o_stuff g2o_types_sba g2o_csparse_extension g2o_types_slam3d cxsparse)
add_executable(pose_graph_g2o_SE3 src/pose_graph_g2o_SE3.cpp)
target_link_libraries(pose_graph_g2o_SE3
${G2O_LIBS}
${CHOLMOD_LIBRARIES} fmt
)
/home/bupo/my_study/slam14/slam14_my/cap10/pose_graph_g2o_SE3/cmake-build-debug/pose_graph_g2o_SE3 ./src/sphere.g2o
read total 2500 vertices, 9799 edges.
optimizing ...
iteration= 0 chi2= 1023011093.967642 time= 0.391243 cumTime= 0.391243 edges= 9799 schur= 0 lambda= 805.622433 levenbergIter= 1
iteration= 1 chi2= 385118688.233188 time= 0.288333 cumTime= 0.679577 edges= 9799 schur= 0 lambda= 537.081622 levenbergIter= 1
iteration= 2 chi2= 166223726.693658 time= 0.286221 cumTime= 0.965798 edges= 9799 schur= 0 lambda= 358.054415 levenbergIter= 1
iteration= 3 chi2= 86610874.269316 time= 0.272452 cumTime= 1.23825 edges= 9799 schur= 0 lambda= 238.702943 levenbergIter= 1
iteration= 4 chi2= 40582782.710190 time= 0.271862 cumTime= 1.51011 edges= 9799 schur= 0 lambda= 159.135295 levenbergIter= 1
iteration= 5 chi2= 15055383.753040 time= 0.271552 cumTime= 1.78166 edges= 9799 schur= 0 lambda= 101.425210 levenbergIter= 1
iteration= 6 chi2= 6715193.487654 time= 0.27709 cumTime= 2.05875 edges= 9799 schur= 0 lambda= 37.664667 levenbergIter= 1
iteration= 7 chi2= 2171949.168383 time= 0.27673 cumTime= 2.33548 edges= 9799 schur= 0 lambda= 12.554889 levenbergIter= 1
iteration= 8 chi2= 740566.827049 time= 0.282254 cumTime= 2.61774 edges= 9799 schur= 0 lambda= 4.184963 levenbergIter= 1
iteration= 9 chi2= 313641.802464 time= 0.272131 cumTime= 2.88987 edges= 9799 schur= 0 lambda= 2.583432 levenbergIter= 1
iteration= 10 chi2= 82659.743578 time= 0.277022 cumTime= 3.16689 edges= 9799 schur= 0 lambda= 0.861144 levenbergIter= 1
iteration= 11 chi2= 58220.369189 time= 0.293291 cumTime= 3.46018 edges= 9799 schur= 0 lambda= 0.287048 levenbergIter= 1
iteration= 12 chi2= 52214.188561 time= 0.326622 cumTime= 3.7868 edges= 9799 schur= 0 lambda= 0.095683 levenbergIter= 1
iteration= 13 chi2= 50948.580336 time= 0.28764 cumTime= 4.07444 edges= 9799 schur= 0 lambda= 0.031894 levenbergIter= 1
iteration= 14 chi2= 50587.776729 time= 0.335924 cumTime= 4.41037 edges= 9799 schur= 0 lambda= 0.016436 levenbergIter= 1
iteration= 15 chi2= 50233.038802 time= 0.279265 cumTime= 4.68963 edges= 9799 schur= 0 lambda= 0.010957 levenbergIter= 1
iteration= 16 chi2= 49995.082836 time= 0.274312 cumTime= 4.96394 edges= 9799 schur= 0 lambda= 0.007305 levenbergIter= 1
iteration= 17 chi2= 48876.738968 time= 0.547949 cumTime= 5.51189 edges= 9799 schur= 0 lambda= 0.009298 levenbergIter= 2
iteration= 18 chi2= 48806.625520 time= 0.277708 cumTime= 5.7896 edges= 9799 schur= 0 lambda= 0.006199 levenbergIter= 1
iteration= 19 chi2= 47790.891374 time= 0.534136 cumTime= 6.32374 edges= 9799 schur= 0 lambda= 0.008265 levenbergIter= 2
iteration= 20 chi2= 47713.626578 time= 0.271654 cumTime= 6.59539 edges= 9799 schur= 0 lambda= 0.005510 levenbergIter= 1
iteration= 21 chi2= 46869.323691 time= 0.534435 cumTime= 7.12983 edges= 9799 schur= 0 lambda= 0.007347 levenbergIter= 2
iteration= 22 chi2= 46802.585509 time= 0.273815 cumTime= 7.40364 edges= 9799 schur= 0 lambda= 0.004898 levenbergIter= 1
iteration= 23 chi2= 46128.758046 time= 0.53324 cumTime= 7.93688 edges= 9799 schur= 0 lambda= 0.006489 levenbergIter= 2
iteration= 24 chi2= 46069.133544 time= 0.270033 cumTime= 8.20692 edges= 9799 schur= 0 lambda= 0.004326 levenbergIter= 1
iteration= 25 chi2= 45553.862168 time= 0.53346 cumTime= 8.74038 edges= 9799 schur= 0 lambda= 0.005595 levenbergIter= 2
iteration= 26 chi2= 45511.762622 time= 0.273562 cumTime= 9.01394 edges= 9799 schur= 0 lambda= 0.003730 levenbergIter= 1
iteration= 27 chi2= 45122.763002 time= 0.535634 cumTime= 9.54957 edges= 9799 schur= 0 lambda= 0.004690 levenbergIter= 2
iteration= 28 chi2= 45095.174401 time= 0.26904 cumTime= 9.81861 edges= 9799 schur= 0 lambda= 0.003127 levenbergIter= 1
iteration= 29 chi2= 44811.248507 time= 0.532803 cumTime= 10.3514 edges= 9799 schur= 0 lambda= 0.003785 levenbergIter= 2
saving optimization results ...
进程已结束,退出代码0
sphere.g2o可视化为
result.g2o可视化为
cmake_modules/FindG2O.cmake
文件,链接: https://pan.baidu.com/s/15j-IP1MNoI5_1uPIV5kLOg 提取码: i19hsphere.g2o
文件,链接: https://pan.baidu.com/s/1FyoEwOIB39oC2tUJ639d1A 提取码: m5bw#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace Eigen;
using Sophus::SE3d;
using Sophus::SO3d;
/************************************************
* 本程序演示如何用g2o solver进行位姿图优化
* sphere.g2o是人工生成的一个Pose graph,我们来优化它。
* 尽管可以直接通过load函数读取整个图,但我们还是自己来实现读取代码,以期获得更深刻的理解
* 本节使用李代数表达位姿图,节点和边的方式为自定义
* **********************************************/
typedef Matrix<double, 6, 6> Matrix6d;
// 给定误差求J_R^{-1}的近似
Matrix6d JRInv(const SE3d &e) {
Matrix6d J;
J.block(0, 0, 3, 3) = SO3d::hat(e.so3().log());
J.block(0, 3, 3, 3) = SO3d::hat(e.translation());
J.block(3, 0, 3, 3) = Matrix3d::Zero(3, 3);
J.block(3, 3, 3, 3) = SO3d::hat(e.so3().log());
//J = J * 0.5 + Matrix6d::Identity();
J = Matrix6d::Identity(); // try Identity if you want
return J;
}
// 李代数顶点
typedef Matrix<double, 6, 1> Vector6d;
class VertexSE3LieAlgebra : public g2o::BaseVertex<6, SE3d> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
virtual bool read(istream &is) override {
double data[7];
for (int i = 0; i < 7; i++)
is >> data[i];
setEstimate(SE3d(
Quaterniond(data[6], data[3], data[4], data[5]),
Vector3d(data[0], data[1], data[2])
));
}
virtual bool write(ostream &os) const override {
os << id() << " ";
Quaterniond q = _estimate.unit_quaternion();
os << _estimate.translation().transpose() << " ";
os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << endl;
return true;
}
virtual void setToOriginImpl() override {
_estimate = SE3d();
}
// 左乘更新
virtual void oplusImpl(const double *update) override {
Vector6d upd;
upd << update[0], update[1], update[2], update[3], update[4], update[5];
_estimate = SE3d::exp(upd) * _estimate;
}
};
// 两个李代数节点之边
class EdgeSE3LieAlgebra : public g2o::BaseBinaryEdge<6, SE3d, VertexSE3LieAlgebra, VertexSE3LieAlgebra> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
virtual bool read(istream &is) override {
double data[7];
for (int i = 0; i < 7; i++)
is >> data[i];
Quaterniond q(data[6], data[3], data[4], data[5]);
q.normalize();
setMeasurement(SE3d(q, Vector3d(data[0], data[1], data[2])));
for (int i = 0; i < information().rows() && is.good(); i++)
for (int j = i; j < information().cols() && is.good(); j++) {
is >> information()(i, j);
if (i != j)
information()(j, i) = information()(i, j);
}
return true;
}
virtual bool write(ostream &os) const override {
VertexSE3LieAlgebra *v1 = static_cast<VertexSE3LieAlgebra *> (_vertices[0]);
VertexSE3LieAlgebra *v2 = static_cast<VertexSE3LieAlgebra *> (_vertices[1]);
os << v1->id() << " " << v2->id() << " ";
SE3d m = _measurement;
Eigen::Quaterniond q = m.unit_quaternion();
os << m.translation().transpose() << " ";
os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << " ";
// information matrix
for (int i = 0; i < information().rows(); i++)
for (int j = i; j < information().cols(); j++) {
os << information()(i, j) << " ";
}
os << endl;
return true;
}
// 误差计算与书中推导一致
virtual void computeError() override {
SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
_error = (_measurement.inverse() * v1.inverse() * v2).log();
}
// 雅可比计算
virtual void linearizeOplus() override {
SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
Matrix6d J = JRInv(SE3d::exp(_error));
// 尝试把J近似为I?
_jacobianOplusXi = -J * v2.inverse().Adj();
_jacobianOplusXj = J * v2.inverse().Adj();
}
};
int main(int argc, char **argv) {
if (argc != 2) {
cout << "Usage: pose_graph_g2o_SE3_lie sphere.g2o" << endl;
return 1;
}
ifstream fin(argv[1]);
if (!fin) {
cout << "file " << argv[1] << " does not exist." << endl;
return 1;
}
// 设定g2o
typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;
typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;
auto solver = new g2o::OptimizationAlgorithmLevenberg(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出
int vertexCnt = 0, edgeCnt = 0; // 顶点和边的数量
vector<VertexSE3LieAlgebra *> vectices;
vector<EdgeSE3LieAlgebra *> edges;
while (!fin.eof()) {
string name;
fin >> name;
if (name == "VERTEX_SE3:QUAT") {
// 顶点
VertexSE3LieAlgebra *v = new VertexSE3LieAlgebra();
int index = 0;
fin >> index;
v->setId(index);
v->read(fin);
optimizer.addVertex(v);
vertexCnt++;
vectices.push_back(v);
if (index == 0)
v->setFixed(true);
} else if (name == "EDGE_SE3:QUAT") {
// SE3-SE3 边
EdgeSE3LieAlgebra *e = new EdgeSE3LieAlgebra();
int idx1, idx2; // 关联的两个顶点
fin >> idx1 >> idx2;
e->setId(edgeCnt++);
e->setVertex(0, optimizer.vertices()[idx1]);
e->setVertex(1, optimizer.vertices()[idx2]);
e->read(fin);
optimizer.addEdge(e);
edges.push_back(e);
}
if (!fin.good()) break;
}
cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;
cout << "optimizing ..." << endl;
optimizer.initializeOptimization();
optimizer.optimize(30);
cout << "saving optimization results ..." << endl;
// 因为用了自定义顶点且没有向g2o注册,这里保存自己来实现
// 伪装成 SE3 顶点和边,让 g2o_viewer 可以认出
ofstream fout("result_lie.g2o");
for (VertexSE3LieAlgebra *v:vectices) {
fout << "VERTEX_SE3:QUAT ";
v->write(fout);
}
for (EdgeSE3LieAlgebra *e:edges) {
fout << "EDGE_SE3:QUAT ";
e->write(fout);
}
fout.close();
return 0;
}
cmake_minimum_required(VERSION 2.8)
project(pose_graph)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_STANDARD 14)
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)
# Eigen
include_directories("/usr/include/eigen3")
# sophus
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})
# g2o
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})
SET(G2O_LIBS g2o_core g2o_stuff g2o_types_sba g2o_csparse_extension g2o_types_slam3d cxsparse)
add_executable(pose_graph_g2o_lie src/pose_graph_g2o_lie_algebra.cpp)
target_link_libraries(pose_graph_g2o_lie
${G2O_LIBS}
${CHOLMOD_LIBRARIES}
${Sophus_LIBRARIES} fmt
)
/home/bupo/my_study/slam14/slam14_my/cap10/pose_graph_g2o_lie_algebra/cmake-build-debug/pose_graph_g2o_lie ./src/sphere.g2o
read total 2500 vertices, 9799 edges.
optimizing ...
iteration= 0 chi2= 674837160.579970 time= 0.313929 cumTime= 0.313929 edges= 9799 schur= 0 lambda= 6658.554263 levenbergIter= 1
iteration= 1 chi2= 234706314.970484 time= 0.291987 cumTime= 0.605915 edges= 9799 schur= 0 lambda= 2219.518088 levenbergIter= 1
iteration= 2 chi2= 142146174.348537 time= 0.277532 cumTime= 0.883447 edges= 9799 schur= 0 lambda= 739.839363 levenbergIter= 1
iteration= 3 chi2= 83834595.145595 time= 0.279928 cumTime= 1.16337 edges= 9799 schur= 0 lambda= 246.613121 levenbergIter= 1
iteration= 4 chi2= 41878079.903257 time= 0.273487 cumTime= 1.43686 edges= 9799 schur= 0 lambda= 82.204374 levenbergIter= 1
iteration= 5 chi2= 16598628.119947 time= 0.272396 cumTime= 1.70926 edges= 9799 schur= 0 lambda= 27.401458 levenbergIter= 1
iteration= 6 chi2= 6137666.739405 time= 0.272809 cumTime= 1.98207 edges= 9799 schur= 0 lambda= 9.133819 levenbergIter= 1
iteration= 7 chi2= 2182986.250593 time= 0.275608 cumTime= 2.25767 edges= 9799 schur= 0 lambda= 3.044606 levenbergIter= 1
iteration= 8 chi2= 732676.668220 time= 0.27199 cumTime= 2.52967 edges= 9799 schur= 0 lambda= 1.014869 levenbergIter= 1
iteration= 9 chi2= 284457.115176 time= 0.273163 cumTime= 2.80283 edges= 9799 schur= 0 lambda= 0.338290 levenbergIter= 1
iteration= 10 chi2= 170796.109734 time= 0.272436 cumTime= 3.07526 edges= 9799 schur= 0 lambda= 0.181974 levenbergIter= 1
iteration= 11 chi2= 145466.315841 time= 0.270867 cumTime= 3.34613 edges= 9799 schur= 0 lambda= 0.060658 levenbergIter= 1
iteration= 12 chi2= 142373.179500 time= 0.271743 cumTime= 3.61787 edges= 9799 schur= 0 lambda= 0.020219 levenbergIter= 1
iteration= 13 chi2= 137485.756901 time= 0.276317 cumTime= 3.89419 edges= 9799 schur= 0 lambda= 0.006740 levenbergIter= 1
iteration= 14 chi2= 131202.175668 time= 0.27323 cumTime= 4.16742 edges= 9799 schur= 0 lambda= 0.002247 levenbergIter= 1
iteration= 15 chi2= 128006.202530 time= 0.272473 cumTime= 4.43989 edges= 9799 schur= 0 lambda= 0.000749 levenbergIter= 1
iteration= 16 chi2= 127587.860945 time= 0.272907 cumTime= 4.7128 edges= 9799 schur= 0 lambda= 0.000250 levenbergIter= 1
iteration= 17 chi2= 127578.599359 time= 0.272402 cumTime= 4.9852 edges= 9799 schur= 0 lambda= 0.000083 levenbergIter= 1
iteration= 18 chi2= 127578.573853 time= 0.27214 cumTime= 5.25734 edges= 9799 schur= 0 lambda= 0.000028 levenbergIter= 1
iteration= 19 chi2= 127578.573840 time= 0.272582 cumTime= 5.52992 edges= 9799 schur= 0 lambda= 0.000018 levenbergIter= 1
iteration= 20 chi2= 127578.573840 time= 0.270247 cumTime= 5.80017 edges= 9799 schur= 0 lambda= 0.000012 levenbergIter= 1
iteration= 21 chi2= 127578.573840 time= 0.275518 cumTime= 6.07569 edges= 9799 schur= 0 lambda= 0.000008 levenbergIter= 1
iteration= 22 chi2= 127578.573840 time= 0.793899 cumTime= 6.86959 edges= 9799 schur= 0 lambda= 0.000044 levenbergIter= 3
iteration= 23 chi2= 127578.573840 time= 0.791677 cumTime= 7.66127 edges= 9799 schur= 0 lambda= 0.000234 levenbergIter= 3
iteration= 24 chi2= 127578.573840 time= 2.63651 cumTime= 10.2978 edges= 9799 schur= 0 lambda= 5483030743.383683 levenbergIter= 10
saving optimization results ...
进程已结束,退出代码0