• 【slam十四讲第二版】【课本例题代码向】【第十讲~后端2】


    0 前言

    1 实践:位姿图优化

    1.1 g2o原生位姿图

    1.1.1 pose_graph_g2o_SE3.cpp

    #include 
    #include 
    #include 
    
    #include 
    #include 
    #include 
    #include 
    
    using namespace std;
    
    /************************************************
     * 本程序演示如何用g2o solver进行位姿图优化
     * sphere.g2o是人工生成的一个Pose graph,我们来优化它。
     * 尽管可以直接通过load函数读取整个图,但我们还是自己来实现读取代码,以期获得更深刻的理解
     * 这里使用g2o/types/slam3d/中的SE3表示位姿,它实质上是四元数而非李代数.
     * **********************************************/
    
    int main(int argc, char **argv) {
        if (argc != 2) {
            cout << "Usage: pose_graph_g2o_SE3 sphere.g2o" << endl;
            return 1;
        }
        ifstream fin(argv[1]);
        if (!fin) {
            cout << "file " << argv[1] << " does not exist." << endl;
            return 1;
        }
    
        // 设定g2o
        typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;
        typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;
        auto solver = new g2o::OptimizationAlgorithmLevenberg(
                g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
        g2o::SparseOptimizer optimizer;     // 图模型
        optimizer.setAlgorithm(solver);   // 设置求解器
        optimizer.setVerbose(true);       // 打开调试输出
    
        int vertexCnt = 0, edgeCnt = 0; // 顶点和边的数量
        while (!fin.eof()) {
            string name;
            fin >> name;
            if (name == "VERTEX_SE3:QUAT") {
                // SE3 顶点
                g2o::VertexSE3 *v = new g2o::VertexSE3();
                int index = 0;
                fin >> index;
                v->setId(index);
                v->read(fin);
                optimizer.addVertex(v);
                vertexCnt++;
                if (index == 0)
                    v->setFixed(true);
            } else if (name == "EDGE_SE3:QUAT") {
                // SE3-SE3 边
                g2o::EdgeSE3 *e = new g2o::EdgeSE3();
                int idx1, idx2;     // 关联的两个顶点
                fin >> idx1 >> idx2;
                e->setId(edgeCnt++);
                e->setVertex(0, optimizer.vertices()[idx1]);
                e->setVertex(1, optimizer.vertices()[idx2]);
                e->read(fin);
                optimizer.addEdge(e);
            }
            if (!fin.good()) break;
        }
    
        cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;
    
        cout << "optimizing ..." << endl;
        optimizer.initializeOptimization();
        optimizer.optimize(30);
    
        cout << "saving optimization results ..." << endl;
        optimizer.save("result.g2o");
    
        return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78

    1.1.2 CMakeLists.txt

    cmake_minimum_required(VERSION 2.8)
    project(pose_graph_g2o_SE3)
    
    set(CMAKE_BUILD_TYPE "Release")
    set(CMAKE_CXX_STANDARD 14)
    
    list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)
    
    # Eigen
    include_directories("/usr/include/eigen3")
    
    # sophus
    find_package(Sophus REQUIRED)
    include_directories(${Sophus_INCLUDE_DIRS})
    
    # g2o
    find_package(G2O REQUIRED)
    include_directories(${G2O_INCLUDE_DIRS})
    
    SET(G2O_LIBS  g2o_core g2o_stuff g2o_types_sba g2o_csparse_extension g2o_types_slam3d cxsparse)
    
    add_executable(pose_graph_g2o_SE3 src/pose_graph_g2o_SE3.cpp)
    target_link_libraries(pose_graph_g2o_SE3
            ${G2O_LIBS}
            ${CHOLMOD_LIBRARIES} fmt
            )
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    1.1.3 输出

    /home/bupo/my_study/slam14/slam14_my/cap10/pose_graph_g2o_SE3/cmake-build-debug/pose_graph_g2o_SE3 ./src/sphere.g2o
    read total 2500 vertices, 9799 edges.
    optimizing ...
    iteration= 0	 chi2= 1023011093.967642	 time= 0.391243	 cumTime= 0.391243	 edges= 9799	 schur= 0	 lambda= 805.622433	 levenbergIter= 1
    iteration= 1	 chi2= 385118688.233188	 time= 0.288333	 cumTime= 0.679577	 edges= 9799	 schur= 0	 lambda= 537.081622	 levenbergIter= 1
    iteration= 2	 chi2= 166223726.693658	 time= 0.286221	 cumTime= 0.965798	 edges= 9799	 schur= 0	 lambda= 358.054415	 levenbergIter= 1
    iteration= 3	 chi2= 86610874.269316	 time= 0.272452	 cumTime= 1.23825	 edges= 9799	 schur= 0	 lambda= 238.702943	 levenbergIter= 1
    iteration= 4	 chi2= 40582782.710190	 time= 0.271862	 cumTime= 1.51011	 edges= 9799	 schur= 0	 lambda= 159.135295	 levenbergIter= 1
    iteration= 5	 chi2= 15055383.753040	 time= 0.271552	 cumTime= 1.78166	 edges= 9799	 schur= 0	 lambda= 101.425210	 levenbergIter= 1
    iteration= 6	 chi2= 6715193.487654	 time= 0.27709	 cumTime= 2.05875	 edges= 9799	 schur= 0	 lambda= 37.664667	 levenbergIter= 1
    iteration= 7	 chi2= 2171949.168383	 time= 0.27673	 cumTime= 2.33548	 edges= 9799	 schur= 0	 lambda= 12.554889	 levenbergIter= 1
    iteration= 8	 chi2= 740566.827049	 time= 0.282254	 cumTime= 2.61774	 edges= 9799	 schur= 0	 lambda= 4.184963	 levenbergIter= 1
    iteration= 9	 chi2= 313641.802464	 time= 0.272131	 cumTime= 2.88987	 edges= 9799	 schur= 0	 lambda= 2.583432	 levenbergIter= 1
    iteration= 10	 chi2= 82659.743578	 time= 0.277022	 cumTime= 3.16689	 edges= 9799	 schur= 0	 lambda= 0.861144	 levenbergIter= 1
    iteration= 11	 chi2= 58220.369189	 time= 0.293291	 cumTime= 3.46018	 edges= 9799	 schur= 0	 lambda= 0.287048	 levenbergIter= 1
    iteration= 12	 chi2= 52214.188561	 time= 0.326622	 cumTime= 3.7868	 edges= 9799	 schur= 0	 lambda= 0.095683	 levenbergIter= 1
    iteration= 13	 chi2= 50948.580336	 time= 0.28764	 cumTime= 4.07444	 edges= 9799	 schur= 0	 lambda= 0.031894	 levenbergIter= 1
    iteration= 14	 chi2= 50587.776729	 time= 0.335924	 cumTime= 4.41037	 edges= 9799	 schur= 0	 lambda= 0.016436	 levenbergIter= 1
    iteration= 15	 chi2= 50233.038802	 time= 0.279265	 cumTime= 4.68963	 edges= 9799	 schur= 0	 lambda= 0.010957	 levenbergIter= 1
    iteration= 16	 chi2= 49995.082836	 time= 0.274312	 cumTime= 4.96394	 edges= 9799	 schur= 0	 lambda= 0.007305	 levenbergIter= 1
    iteration= 17	 chi2= 48876.738968	 time= 0.547949	 cumTime= 5.51189	 edges= 9799	 schur= 0	 lambda= 0.009298	 levenbergIter= 2
    iteration= 18	 chi2= 48806.625520	 time= 0.277708	 cumTime= 5.7896	 edges= 9799	 schur= 0	 lambda= 0.006199	 levenbergIter= 1
    iteration= 19	 chi2= 47790.891374	 time= 0.534136	 cumTime= 6.32374	 edges= 9799	 schur= 0	 lambda= 0.008265	 levenbergIter= 2
    iteration= 20	 chi2= 47713.626578	 time= 0.271654	 cumTime= 6.59539	 edges= 9799	 schur= 0	 lambda= 0.005510	 levenbergIter= 1
    iteration= 21	 chi2= 46869.323691	 time= 0.534435	 cumTime= 7.12983	 edges= 9799	 schur= 0	 lambda= 0.007347	 levenbergIter= 2
    iteration= 22	 chi2= 46802.585509	 time= 0.273815	 cumTime= 7.40364	 edges= 9799	 schur= 0	 lambda= 0.004898	 levenbergIter= 1
    iteration= 23	 chi2= 46128.758046	 time= 0.53324	 cumTime= 7.93688	 edges= 9799	 schur= 0	 lambda= 0.006489	 levenbergIter= 2
    iteration= 24	 chi2= 46069.133544	 time= 0.270033	 cumTime= 8.20692	 edges= 9799	 schur= 0	 lambda= 0.004326	 levenbergIter= 1
    iteration= 25	 chi2= 45553.862168	 time= 0.53346	 cumTime= 8.74038	 edges= 9799	 schur= 0	 lambda= 0.005595	 levenbergIter= 2
    iteration= 26	 chi2= 45511.762622	 time= 0.273562	 cumTime= 9.01394	 edges= 9799	 schur= 0	 lambda= 0.003730	 levenbergIter= 1
    iteration= 27	 chi2= 45122.763002	 time= 0.535634	 cumTime= 9.54957	 edges= 9799	 schur= 0	 lambda= 0.004690	 levenbergIter= 2
    iteration= 28	 chi2= 45095.174401	 time= 0.26904	 cumTime= 9.81861	 edges= 9799	 schur= 0	 lambda= 0.003127	 levenbergIter= 1
    iteration= 29	 chi2= 44811.248507	 time= 0.532803	 cumTime= 10.3514	 edges= 9799	 schur= 0	 lambda= 0.003785	 levenbergIter= 2
    saving optimization results ...
    
    进程已结束,退出代码0
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • sphere.g2o可视化为
      在这里插入图片描述

    • result.g2o可视化为
      在这里插入图片描述

    1.2 李代数上的位姿图优化

    1.2.1 pose_graph_g2o_lie_algebra.cpp

    #include 
    #include 
    #include 
    #include 
    
    #include 
    #include 
    #include 
    #include 
    #include 
    
    #include 
    
    using namespace std;
    using namespace Eigen;
    using Sophus::SE3d;
    using Sophus::SO3d;
    
    /************************************************
     * 本程序演示如何用g2o solver进行位姿图优化
     * sphere.g2o是人工生成的一个Pose graph,我们来优化它。
     * 尽管可以直接通过load函数读取整个图,但我们还是自己来实现读取代码,以期获得更深刻的理解
     * 本节使用李代数表达位姿图,节点和边的方式为自定义
     * **********************************************/
    
    typedef Matrix<double, 6, 6> Matrix6d;
    
    // 给定误差求J_R^{-1}的近似
    Matrix6d JRInv(const SE3d &e) {
        Matrix6d J;
        J.block(0, 0, 3, 3) = SO3d::hat(e.so3().log());
        J.block(0, 3, 3, 3) = SO3d::hat(e.translation());
        J.block(3, 0, 3, 3) = Matrix3d::Zero(3, 3);
        J.block(3, 3, 3, 3) = SO3d::hat(e.so3().log());
        //J = J * 0.5 + Matrix6d::Identity();
        J = Matrix6d::Identity();    // try Identity if you want
        return J;
    }
    
    // 李代数顶点
    typedef Matrix<double, 6, 1> Vector6d;
    
    class VertexSE3LieAlgebra : public g2o::BaseVertex<6, SE3d> {
    public:
        EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    
        virtual bool read(istream &is) override {
            double data[7];
            for (int i = 0; i < 7; i++)
                is >> data[i];
            setEstimate(SE3d(
                    Quaterniond(data[6], data[3], data[4], data[5]),
                    Vector3d(data[0], data[1], data[2])
            ));
        }
    
        virtual bool write(ostream &os) const override {
            os << id() << " ";
            Quaterniond q = _estimate.unit_quaternion();
            os << _estimate.translation().transpose() << " ";
            os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << endl;
            return true;
        }
    
        virtual void setToOriginImpl() override {
            _estimate = SE3d();
        }
    
        // 左乘更新
        virtual void oplusImpl(const double *update) override {
            Vector6d upd;
            upd << update[0], update[1], update[2], update[3], update[4], update[5];
            _estimate = SE3d::exp(upd) * _estimate;
        }
    };
    
    // 两个李代数节点之边
    class EdgeSE3LieAlgebra : public g2o::BaseBinaryEdge<6, SE3d, VertexSE3LieAlgebra, VertexSE3LieAlgebra> {
    public:
        EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    
        virtual bool read(istream &is) override {
            double data[7];
            for (int i = 0; i < 7; i++)
                is >> data[i];
            Quaterniond q(data[6], data[3], data[4], data[5]);
            q.normalize();
            setMeasurement(SE3d(q, Vector3d(data[0], data[1], data[2])));
            for (int i = 0; i < information().rows() && is.good(); i++)
                for (int j = i; j < information().cols() && is.good(); j++) {
                    is >> information()(i, j);
                    if (i != j)
                        information()(j, i) = information()(i, j);
                }
            return true;
        }
    
        virtual bool write(ostream &os) const override {
            VertexSE3LieAlgebra *v1 = static_cast<VertexSE3LieAlgebra *> (_vertices[0]);
            VertexSE3LieAlgebra *v2 = static_cast<VertexSE3LieAlgebra *> (_vertices[1]);
            os << v1->id() << " " << v2->id() << " ";
            SE3d m = _measurement;
            Eigen::Quaterniond q = m.unit_quaternion();
            os << m.translation().transpose() << " ";
            os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << " ";
    
            // information matrix
            for (int i = 0; i < information().rows(); i++)
                for (int j = i; j < information().cols(); j++) {
                    os << information()(i, j) << " ";
                }
            os << endl;
            return true;
        }
    
        // 误差计算与书中推导一致
        virtual void computeError() override {
            SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
            SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
            _error = (_measurement.inverse() * v1.inverse() * v2).log();
        }
    
        // 雅可比计算
        virtual void linearizeOplus() override {
            SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
            SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
            Matrix6d J = JRInv(SE3d::exp(_error));
            // 尝试把J近似为I?
            _jacobianOplusXi = -J * v2.inverse().Adj();
            _jacobianOplusXj = J * v2.inverse().Adj();
        }
    };
    
    int main(int argc, char **argv) {
        if (argc != 2) {
            cout << "Usage: pose_graph_g2o_SE3_lie sphere.g2o" << endl;
            return 1;
        }
        ifstream fin(argv[1]);
        if (!fin) {
            cout << "file " << argv[1] << " does not exist." << endl;
            return 1;
        }
    
        // 设定g2o
        typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;
        typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;
        auto solver = new g2o::OptimizationAlgorithmLevenberg(
                g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
        g2o::SparseOptimizer optimizer;     // 图模型
        optimizer.setAlgorithm(solver);   // 设置求解器
        optimizer.setVerbose(true);       // 打开调试输出
    
        int vertexCnt = 0, edgeCnt = 0; // 顶点和边的数量
    
        vector<VertexSE3LieAlgebra *> vectices;
        vector<EdgeSE3LieAlgebra *> edges;
        while (!fin.eof()) {
            string name;
            fin >> name;
            if (name == "VERTEX_SE3:QUAT") {
                // 顶点
                VertexSE3LieAlgebra *v = new VertexSE3LieAlgebra();
                int index = 0;
                fin >> index;
                v->setId(index);
                v->read(fin);
                optimizer.addVertex(v);
                vertexCnt++;
                vectices.push_back(v);
                if (index == 0)
                    v->setFixed(true);
            } else if (name == "EDGE_SE3:QUAT") {
                // SE3-SE3 边
                EdgeSE3LieAlgebra *e = new EdgeSE3LieAlgebra();
                int idx1, idx2;     // 关联的两个顶点
                fin >> idx1 >> idx2;
                e->setId(edgeCnt++);
                e->setVertex(0, optimizer.vertices()[idx1]);
                e->setVertex(1, optimizer.vertices()[idx2]);
                e->read(fin);
                optimizer.addEdge(e);
                edges.push_back(e);
            }
            if (!fin.good()) break;
        }
    
        cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;
    
        cout << "optimizing ..." << endl;
        optimizer.initializeOptimization();
        optimizer.optimize(30);
    
        cout << "saving optimization results ..." << endl;
    
        // 因为用了自定义顶点且没有向g2o注册,这里保存自己来实现
        // 伪装成 SE3 顶点和边,让 g2o_viewer 可以认出
        ofstream fout("result_lie.g2o");
        for (VertexSE3LieAlgebra *v:vectices) {
            fout << "VERTEX_SE3:QUAT ";
            v->write(fout);
        }
        for (EdgeSE3LieAlgebra *e:edges) {
            fout << "EDGE_SE3:QUAT ";
            e->write(fout);
        }
        fout.close();
        return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209

    1.2.2 CMakeLists.txt

    cmake_minimum_required(VERSION 2.8)
    project(pose_graph)
    
    set(CMAKE_BUILD_TYPE "Release")
    set(CMAKE_CXX_STANDARD 14)
    
    list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)
    
    # Eigen
    include_directories("/usr/include/eigen3")
    
    # sophus
    find_package(Sophus REQUIRED)
    include_directories(${Sophus_INCLUDE_DIRS})
    
    # g2o
    find_package(G2O REQUIRED)
    include_directories(${G2O_INCLUDE_DIRS})
    
    SET(G2O_LIBS  g2o_core g2o_stuff g2o_types_sba g2o_csparse_extension g2o_types_slam3d cxsparse)
    
    add_executable(pose_graph_g2o_lie src/pose_graph_g2o_lie_algebra.cpp)
    target_link_libraries(pose_graph_g2o_lie
            ${G2O_LIBS}
            ${CHOLMOD_LIBRARIES}
            ${Sophus_LIBRARIES} fmt
            )
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    1.2.3 输出

    /home/bupo/my_study/slam14/slam14_my/cap10/pose_graph_g2o_lie_algebra/cmake-build-debug/pose_graph_g2o_lie ./src/sphere.g2o
    read total 2500 vertices, 9799 edges.
    optimizing ...
    iteration= 0	 chi2= 674837160.579970	 time= 0.313929	 cumTime= 0.313929	 edges= 9799	 schur= 0	 lambda= 6658.554263	 levenbergIter= 1
    iteration= 1	 chi2= 234706314.970484	 time= 0.291987	 cumTime= 0.605915	 edges= 9799	 schur= 0	 lambda= 2219.518088	 levenbergIter= 1
    iteration= 2	 chi2= 142146174.348537	 time= 0.277532	 cumTime= 0.883447	 edges= 9799	 schur= 0	 lambda= 739.839363	 levenbergIter= 1
    iteration= 3	 chi2= 83834595.145595	 time= 0.279928	 cumTime= 1.16337	 edges= 9799	 schur= 0	 lambda= 246.613121	 levenbergIter= 1
    iteration= 4	 chi2= 41878079.903257	 time= 0.273487	 cumTime= 1.43686	 edges= 9799	 schur= 0	 lambda= 82.204374	 levenbergIter= 1
    iteration= 5	 chi2= 16598628.119947	 time= 0.272396	 cumTime= 1.70926	 edges= 9799	 schur= 0	 lambda= 27.401458	 levenbergIter= 1
    iteration= 6	 chi2= 6137666.739405	 time= 0.272809	 cumTime= 1.98207	 edges= 9799	 schur= 0	 lambda= 9.133819	 levenbergIter= 1
    iteration= 7	 chi2= 2182986.250593	 time= 0.275608	 cumTime= 2.25767	 edges= 9799	 schur= 0	 lambda= 3.044606	 levenbergIter= 1
    iteration= 8	 chi2= 732676.668220	 time= 0.27199	 cumTime= 2.52967	 edges= 9799	 schur= 0	 lambda= 1.014869	 levenbergIter= 1
    iteration= 9	 chi2= 284457.115176	 time= 0.273163	 cumTime= 2.80283	 edges= 9799	 schur= 0	 lambda= 0.338290	 levenbergIter= 1
    iteration= 10	 chi2= 170796.109734	 time= 0.272436	 cumTime= 3.07526	 edges= 9799	 schur= 0	 lambda= 0.181974	 levenbergIter= 1
    iteration= 11	 chi2= 145466.315841	 time= 0.270867	 cumTime= 3.34613	 edges= 9799	 schur= 0	 lambda= 0.060658	 levenbergIter= 1
    iteration= 12	 chi2= 142373.179500	 time= 0.271743	 cumTime= 3.61787	 edges= 9799	 schur= 0	 lambda= 0.020219	 levenbergIter= 1
    iteration= 13	 chi2= 137485.756901	 time= 0.276317	 cumTime= 3.89419	 edges= 9799	 schur= 0	 lambda= 0.006740	 levenbergIter= 1
    iteration= 14	 chi2= 131202.175668	 time= 0.27323	 cumTime= 4.16742	 edges= 9799	 schur= 0	 lambda= 0.002247	 levenbergIter= 1
    iteration= 15	 chi2= 128006.202530	 time= 0.272473	 cumTime= 4.43989	 edges= 9799	 schur= 0	 lambda= 0.000749	 levenbergIter= 1
    iteration= 16	 chi2= 127587.860945	 time= 0.272907	 cumTime= 4.7128	 edges= 9799	 schur= 0	 lambda= 0.000250	 levenbergIter= 1
    iteration= 17	 chi2= 127578.599359	 time= 0.272402	 cumTime= 4.9852	 edges= 9799	 schur= 0	 lambda= 0.000083	 levenbergIter= 1
    iteration= 18	 chi2= 127578.573853	 time= 0.27214	 cumTime= 5.25734	 edges= 9799	 schur= 0	 lambda= 0.000028	 levenbergIter= 1
    iteration= 19	 chi2= 127578.573840	 time= 0.272582	 cumTime= 5.52992	 edges= 9799	 schur= 0	 lambda= 0.000018	 levenbergIter= 1
    iteration= 20	 chi2= 127578.573840	 time= 0.270247	 cumTime= 5.80017	 edges= 9799	 schur= 0	 lambda= 0.000012	 levenbergIter= 1
    iteration= 21	 chi2= 127578.573840	 time= 0.275518	 cumTime= 6.07569	 edges= 9799	 schur= 0	 lambda= 0.000008	 levenbergIter= 1
    iteration= 22	 chi2= 127578.573840	 time= 0.793899	 cumTime= 6.86959	 edges= 9799	 schur= 0	 lambda= 0.000044	 levenbergIter= 3
    iteration= 23	 chi2= 127578.573840	 time= 0.791677	 cumTime= 7.66127	 edges= 9799	 schur= 0	 lambda= 0.000234	 levenbergIter= 3
    iteration= 24	 chi2= 127578.573840	 time= 2.63651	 cumTime= 10.2978	 edges= 9799	 schur= 0	 lambda= 5483030743.383683	 levenbergIter= 10
    saving optimization results ...
    
    进程已结束,退出代码0
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • sphere.g2o的可视化

    在这里插入图片描述

    • result_lie.g2o的可视化
      在这里插入图片描述
  • 相关阅读:
    网站架构演变、LNP+Mariadb数据库分离、Web服务器集群、Keepalived高可用
    threejs(12)-着色器打造烟雾水云效果
    鸿蒙原生应用元服务-访问控制(权限)开发应用权限列表二
    [算法日志]图论: 深度优先搜索(DFS)
    [BPU部署教程] 教你搞定YOLOV5部署 (版本: 6.2)
    Vue路由重复点击报错解决
    Can 通信-协议
    c++语法拾遗,一些细节与特性
    python笔记Ⅴ----元组、字典、集合
    【博客529】linux cpu的 “steal time“含义
  • 原文地址:https://blog.csdn.net/qq_45954434/article/details/126035397