• 【知识图谱】实践篇——基于医疗知识图谱的问答系统实践(Part2):图谱数据准备与导入


    前序文章:

    【知识图谱】实践篇——基于医疗知识图谱的问答系统实践(Part1):项目介绍与环境准备

    背景

    前文已经介绍了该系统的环境准备。下面介绍图谱数据获取,数据主要从:http://jib.xywy.com/ 爬取。

    环境准备

    按照原来的计划是将数据爬取相关的代码也过一下的,于是做了以下相关配置。

    这里选择数据存储的库是mongodb。和以往一样,我依然使用docker容器化的方式去安装,相关方法可以参考:Docker 安装 MongoDB。然后安装连接mongodb的驱动程序:pip install pymongo。因为需要连接数据库等,这里按照之前的做法,创建一个配置文件。
    KGQAMedicine/data/config.ini

    [neo4j]
    host=http://192.168.56.101
    port=7474
    user=neo4j
    password=root
    [mongodb]
    host=http://192.168.56.101
    port=27017
    user=admin
    password=123456
    [sys]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    KGQAMedicine/utils/config.py

    #!/usr/bin/python
    # -*- coding: UTF-8 -*-
    """
    @author: juzipi
    @file: config.py
    @time:2022/07/20
    @description:
    """
    from configparser import ConfigParser
    
    
    class SysConfig(object):
        __doc__ = """ system config """
    
        # 单例,全局唯一
        def __new__(cls, *args, **kwargs):
            if not hasattr(SysConfig, '_instance'):
                SysConfig._instance = object.__new__(cls)
            return SysConfig._instance
    
        config_parser = ConfigParser()
        config_parser.read("./data/config.ini")
        # neo4j
        NEO4J_HOST = config_parser.get("neo4j", 'host')
        NEO4J_PORT = int(config_parser.get("neo4j", 'port'))
        NEO4J_USER = config_parser.get("neo4j", 'user')
        NEO4J_PASSWORD = config_parser.get('neo4j', 'password')
        # mongodb
        MONGODB_HOST = config_parser.get("mongodb", 'host')
        MONGODB_PORT = int(config_parser.get("mongodb", 'port'))
        MONGODB_USER = config_parser.get("mongodb", 'user')
        MONGODB_PASSWORD = config_parser.get('mongodb', 'password')
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    除此之外,我们还使用requests库以及lxml爬取数据以及解析页面。

    但是考虑到由于原项目时间久远,原爬取的页面可能存在变化。这里介绍一下数据来源网站,如果有对相关数据感兴趣的话,可以在这个网址上爬取。我们使用原项目中已经爬取和处理完毕的数据。

    数据来源

    项目中数据来源于寻医问药网站,需要说明的是,网站也声明:不能作为诊断及医疗的依据。网站页面如下:
    在这里插入图片描述
    我将原项目中的数据放到KGQAMedicine/data/medicial.json中,并将路径配置的配置文件中。从数据形式上来看,该文件中的数据应该是从mongodb中导出。

    图谱数据导入

    该部分改写内容代码如下:

    KGQAMedicine/get_data/build_graph.py

    import json
    import os
    import tqdm
    from py2neo import Graph, Node
    from utils.config import SysConfig
    
    
    class MedicalGraph(object):
    
        def __init__(self):
            self.data_path = SysConfig.DATA_ORIGIN_PATH
            self.graph = Graph(SysConfig.NEO4J_HOST + ":" + str(SysConfig.NEO4J_PORT), auth=(SysConfig.NEO4J_USER,
                                                                                             SysConfig.NEO4J_PASSWORD))
            self.raw_graph_data = None
    
        def _read_nodes(self):
            # 共7类节点
            drugs = []  # 药品
            foods = []  # 食物
            checks = []  # 检查
            departments = []  # 科室
            producers = []  # 药品大类
            diseases = []  # 疾病
            symptoms = []  # 症状
            disease_infos = []  # 疾病信息
            # 构建节点实体关系
            relation_department_department = []  # 科室-科室关系
            relation_diseases_noteat = []  # 疾病-忌吃食物关系
            relation_diseases_doeat = []  # 疾病-宜吃食物关系
            relation_diseases_recommandeat = []  # 疾病-推荐吃食物关系
            relation_diseases_commonddrug = []  # 疾病-通用药品关系
            rels_recommanddrug = []  # 疾病-热门药品关系
            rels_check = []  # 疾病-检查关系
            relation_drug_producer = []  # 厂商-药物关系
    
            rels_symptom = []  # 疾病症状关系
            rels_acompany = []  # 疾病并发关系
            rels_category = []  # 疾病与科室之间的关系
    
            with open(self.data_path, 'r', encoding='utf8') as reader:
                for data in tqdm.tqdm(reader, desc=f"reading {self.data_path} fle"):
                    disease_dict = {}
                    data_json = json.loads(data)
                    disease = data_json['name']
                    disease_dict['name'] = disease
                    diseases.append(disease)
                    disease_dict['desc'] = ''
                    disease_dict['prevent'] = ''
                    disease_dict['cause'] = ''
                    disease_dict['easy_get'] = ''
                    disease_dict['cure_department'] = ''
                    disease_dict['cure_way'] = ''
                    disease_dict['cure_lasttime'] = ''
                    disease_dict['symptom'] = ''
                    disease_dict['cured_prob'] = ''
    
                    if 'symptom' in data_json:
                        symptoms += data_json['symptom']
                        for symptom in data_json['symptom']:
                            rels_symptom.append([disease, symptom])
    
                    if 'acompany' in data_json:
                        for acompany in data_json['acompany']:
                            rels_acompany.append([disease, acompany])
    
                    if 'desc' in data_json:
                        disease_dict['desc'] = data_json['desc']
    
                    if 'prevent' in data_json:
                        disease_dict['prevent'] = data_json['prevent']
    
                    if 'cause' in data_json:
                        disease_dict['cause'] = data_json['cause']
    
                    if 'get_prob' in data_json:
                        disease_dict['get_prob'] = data_json['get_prob']
    
                    if 'easy_get' in data_json:
                        disease_dict['easy_get'] = data_json['easy_get']
    
                    if 'cure_department' in data_json:
                        cure_department = data_json['cure_department']
                        if len(cure_department) == 1:
                            rels_category.append([disease, cure_department[0]])
                        if len(cure_department) == 2:
                            big = cure_department[0]
                            small = cure_department[1]
                            relation_department_department.append([small, big])
                            rels_category.append([disease, small])
    
                        disease_dict['cure_department'] = cure_department
                        departments += cure_department
    
                    if 'cure_way' in data_json:
                        disease_dict['cure_way'] = data_json['cure_way']
    
                    if 'cure_lasttime' in data_json:
                        disease_dict['cure_lasttime'] = data_json['cure_lasttime']
    
                    if 'cured_prob' in data_json:
                        disease_dict['cured_prob'] = data_json['cured_prob']
    
                    if 'common_drug' in data_json:
                        common_drug = data_json['common_drug']
                        for drug in common_drug:
                            relation_diseases_commonddrug.append([disease, drug])
                        drugs += common_drug
    
                    if 'recommand_drug' in data_json:
                        recommand_drug = data_json['recommand_drug']
                        drugs += recommand_drug
                        for drug in recommand_drug:
                            rels_recommanddrug.append([disease, drug])
    
                    if 'not_eat' in data_json:
                        not_eat = data_json['not_eat']
                        for _not in not_eat:
                            relation_diseases_noteat.append([disease, _not])
    
                        foods += not_eat
                        do_eat = data_json['do_eat']
                        for _do in do_eat:
                            relation_diseases_doeat.append([disease, _do])
    
                        foods += do_eat
                        recommand_eat = data_json['recommand_eat']
    
                        for _recommand in recommand_eat:
                            relation_diseases_recommandeat.append([disease, _recommand])
                        foods += recommand_eat
    
                    if 'check' in data_json:
                        check = data_json['check']
                        for _check in check:
                            rels_check.append([disease, _check])
                        checks += check
                    if 'drug_detail' in data_json:
                        drug_detail = data_json['drug_detail']
                        producer = [i.split('(')[0] for i in drug_detail]
                        relation_drug_producer += [[i.split('(')[0], i.split('(')[-1].replace(')', '')] for i in drug_detail]
                        producers += producer
                    disease_infos.append(disease_dict)
            return set(drugs), set(foods), set(checks), set(departments), set(producers), set(symptoms), set(diseases), disease_infos, \
                   rels_check, relation_diseases_recommandeat, relation_diseases_noteat, relation_diseases_doeat, relation_department_department, relation_diseases_commonddrug, relation_drug_producer, rels_recommanddrug, \
                   rels_symptom, rels_acompany, rels_category
    
        def create_graph_nodes(self):
            if self.raw_graph_data is None:
                self.raw_graph_data = self._read_nodes()
            Drugs, Foods, Checks, Departments, Producers, Symptoms, Diseases, disease_infos = self.raw_graph_data[: 8]
            self.create_diseases_nodes(disease_infos)
            self.create_node('Drug', Drugs)
            self.create_node('Food', Foods)
            self.create_node('Check', Checks)
            self.create_node('Department', Departments)
            self.create_node('Producer', Producers)
            self.create_node('Symptom', Symptoms)
    
        def create_node(self, label, nodes):
            for node_name in tqdm.tqdm(nodes, desc=f"creating {label} nodes"):
                node = Node(label, name=node_name)
                self.graph.create(node)
    
        def create_diseases_nodes(self, disease_infos):
            """
            创建知识图谱中心疾病的节点
            :param disease_infos:
            :return:
            """
            for disease_dict in tqdm.tqdm(disease_infos, desc="creating diseases nodes"):
                node = Node("Disease", name=disease_dict['name'], desc=disease_dict['desc'],
                            prevent=disease_dict['prevent'], cause=disease_dict['cause'],
                            easy_get=disease_dict['easy_get'], cure_lasttime=disease_dict['cure_lasttime'],
                            cure_department=disease_dict['cure_department']
                            , cure_way=disease_dict['cure_way'], cured_prob=disease_dict['cured_prob'])
                self.graph.create(node)
    
        def create_graph_relations(self):
            if self.raw_graph_data is None:
                self.raw_graph_data = self._read_nodes()
            rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug, rels_symptom, rels_acompany, rels_category = self.raw_graph_data[
                                                                                                                                                                                            8:]
            self.create_relationship('Disease', 'Food', rels_recommandeat, 'recommand_eat', '推荐食谱')
            self.create_relationship('Disease', 'Food', rels_noteat, 'no_eat', '忌吃')
            self.create_relationship('Disease', 'Food', rels_doeat, 'do_eat', '宜吃')
            self.create_relationship('Department', 'Department', rels_department, 'belongs_to', '属于')
            self.create_relationship('Disease', 'Drug', rels_commonddrug, 'common_drug', '常用药品')
            self.create_relationship('Producer', 'Drug', rels_drug_producer, 'drugs_of', '生产药品')
            self.create_relationship('Disease', 'Drug', rels_recommanddrug, 'recommand_drug', '好评药品')
            self.create_relationship('Disease', 'Check', rels_check, 'need_check', '诊断检查')
            self.create_relationship('Disease', 'Symptom', rels_symptom, 'has_symptom', '症状')
            self.create_relationship('Disease', 'Disease', rels_acompany, 'acompany_with', '并发症')
            self.create_relationship('Disease', 'Department', rels_category, 'belongs_to', '所属科室')
    
        def create_relationship(self, start_node, end_node, edges, rel_type, rel_name):
            """
            创建关系
            :param start_node:
            :param end_node:
            :param edges:
            :param rel_type:
            :param rel_name:
            :return:
            """
            # 去重处理
            set_edges = []
            for edge in edges:
                set_edges.append('###'.join(edge))
            for edge in tqdm.tqdm(set(set_edges), desc=f"building edge {start_node} - {end_node} rel type {rel_type} rel name {rel_name}"):
                edge = edge.split('###')
                p = edge[0]
                q = edge[1]
                query = "match(p:%s),(q:%s) where p.name='%s'and q.name='%s' create (p)-[rel:%s{name:'%s'}]->(q)" % (
                    start_node, end_node, p, q, rel_type, rel_name)
                try:
                    self.graph.run(query)
                except Exception as e:
                    print(e)
    
        @staticmethod
        def _write(file_path, data_list):
            with open(file_path, 'w', encoding='utf8') as writer:
                writer.write("\n".join(data_list))
    
        def export_data_dict(self):
            if self.raw_graph_data is None:
                self.raw_graph_data = self._read_nodes()
            Drugs, Foods, Checks, Departments, Producers, Symptoms, Diseases = self.raw_graph_data[: 7]
            self._write(os.path.join(SysConfig.DATA_DICT_DIR, "drug.txt"), list(Drugs))
            self._write(os.path.join(SysConfig.DATA_DICT_DIR, "food.txt"), list(Foods))
            self._write(os.path.join(SysConfig.DATA_DICT_DIR, "check.txt"), list(Checks))
            self._write(os.path.join(SysConfig.DATA_DICT_DIR, "department.txt"), list(Departments))
            self._write(os.path.join(SysConfig.DATA_DICT_DIR, "producer.txt"), list(Producers))
            self._write(os.path.join(SysConfig.DATA_DICT_DIR, "symptom.txt"), list(Symptoms))
            self._write(os.path.join(SysConfig.DATA_DICT_DIR, "disease.txt"), list(Diseases))
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236

    程序主要是改写了原程序。由于导入数据库时间比较长,这里就没有尝试运行导入到数据库模块程序,只将对应的实体输入到KGQAMedicine/data/dict目录下。有兴趣的朋友可以尝试运行导入。在第一篇文章导入数据的基础上,执行MATCH p=()-->() RETURN p LIMIT 200查询图数据库结果如下:

    在这里插入图片描述
    内容还是比较多的。

  • 相关阅读:
    实现0.5px的线
    十大排序详解js实现(冒泡,插入,选择,快排,归并,希尔,计数,堆,桶,基数)
    XML 工具类
    微服务系列二:微服务架构面临的挑战
    Zabbix5.0_介绍_组成架构_以及和prometheus的对比_大数据环境下的监控_网络_软件_设备监控_Zabbix工作笔记001
    JAVA8新特性
    关于《无货源开店已确认违法》新闻稿说明
    centos 7 yum install -y nagios
    Javascript知识【jQuery:查找元素操作&案例:模拟用户分组】
    千万并发连接下,如何保障网络性能
  • 原文地址:https://blog.csdn.net/meiqi0538/article/details/125950332