本算法已经整理成文档如下,有需要的朋友可以点击进行下载
| 序号 | 文档(点击下载) |
|---|---|
| 本项目文档 | 【老生谈算法】用MATLAB编写PSO算法及实例.docx |
1.1 粒子群算法
PSO从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

其中:c1和c2为学习因子,也称加速常数(acceleration constant),r1和r2为[0,1]范围内的均匀随机数。式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。
二、算法设计
2.1 算法流程图

2.2 算法实现
算法的流程如下:


2.3 参数选择

(1)种群规模
通常,种群太小则不能提供足够的采样点,以致算法性能很差;种群太大尽管可以增加优化信息,阻止早熟收敛的发生,但无疑会增加计算量,造成收敛时间太长,表现为收敛速度缓慢。种群规模一般设为100~1000。本文选择种群规模为100。
(2)最大迭代次数
迭代次数越多能保证解的收敛性,但是影响运算速度,本文选1000次。
(3)惯性权值
惯性权重表示在多大程度上保留原来的速度。较大,全局收敛能力强,局部收敛能力弱;较小,局部收敛能力强,全局收敛能力弱。本文选0.6。
(4)加速因子
加速常数和分别用于控制粒子指向自身或邻域最佳位置的运动。文献[20]建议,并通常取。本文也取。
(5)粒子维数
本文中粒子维数取决于待优化函数的维数。
需要说明的是,本文的程序允许改变这些参数,因为本文编写的程序参照matlab工具箱,留给用户解决这类问题一个接口函数,上述的各个参数正是接口函数的参数,因此允许改变。另外对于w和c也可采用变参数法,即随迭代次数增加,利用经验公式使它们动态调整,本文采用固定值。
3.1求三维函数f=x(1).2+x(2).2+x(3).^2 的最小值
步骤:1.初始化x,v; 2.求出每个粒子的适应值;3.初始化pb,pg个体最优和全局最优;4.根据式子更新x,v; 5.是否满足条件,满足跳出循环,否则重复2-4步
尝试编码:
(1)pso.m 文件
%此算法是PSO算法,汪汪的20161024号版本
function[xm,fv]=PSO(fitness,N,c1,c2,w,M,D)
%{
xm,fv算法最后得到的最优解时的x及最优解,fitness为适应度,即要优化的目标函数,
N为种群数量,c1,c2为学习因子,w为惯性权重,M为迭代次数,D为粒子的维数
%}
format long;
%初始化种群
for i=1:N
for j=1:D
x(i,j)=randn; %随机初始化位置
v(i,j)=randn; %随机初始化速度
end
end
%先计算各个粒子的适应度pi,并初始化y-粒子个体极值,pg-全局极值
for i=1:N
p(i)=fitness(x(i,:)); %适应度 问题:将x(i,:)改成x(i,j)是否可以,答不能
y(i,:)=x(i,:); %个体极值
end
pg=x(N,:);%初始化全局极值/最优
for i=1:N-1
if fitness(x(i,:))<fitness(pg)
pg=x(i,:);%替换并选出全局极值
end
end
%进入粒子群算法主要循环,更新v及x
for t=1:M
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(y(1,:)-x(1,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))<p(i)
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)<fitness(pg)
pg=y(i,:);
end
end
pbest(t)=fitness(pg);%M次迭代后最优解
end
xm=pg';%为何要共轭转置?
fv=fitness(pg);
(2)目标函数fitness.m文件
function f=fitness(x)
f=x(1).^2+x(2).^2+x(3).^2 ;
end
需要说明的是,针对不同的函数优化,只需要改变目标函数就可以。
(3)在命令行输入或建立调用m文件
在命令行先后输入[xm,fv] = PSO(@fitness,100,2,2,0.6,1000,3),或建立包涵该语句的m文件,运行即可得到结果。
四、 结果与分析
xm=1.0e-04 *
-0.285730140229565
0.676783696397148
-0.250529540096653
fv =
6.024429352056337e-09
fv是最优值,xm为最优值对应的自变量值。
3.2 高斯函数
[x y]=meshgrid(-100:100,-100:100); %生成xy坐标系且选取范围
sigma=50; %高斯函数中的sigma为50
img = (1/(2*pi*sigma^2))*exp(-(x.^2+y.^2)/(2*sigma^2));
%目标函数,高斯函数
mesh(img); %三维画图
hold on;