• POJ3268最短路径题解


    POJ3268最短路径题解

    题目

    链接

    http://poj.org/problem?id=3268

    字面描述

    Silver Cow Party
    Time Limit: 2000MS Memory Limit: 65536K
    Total Submissions: 46808 Accepted: 20917
    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1…N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow’s return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: N, M, and X
    Lines 2…M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
    Output

    Line 1: One integer: the maximum of time any one cow must walk.
    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3
    Sample Output

    10
    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
    Source

    USACO 2007 February Silver

    思路

    这道题有来回求,但并没有直接给出源点。
    开始我们已x为源点,向其他点做最短路
    接下来任意一点均要到x点做最短路
    最后比较出两者之和的最大值

    代码实现

    #include
    #include
    #include
    #include
    using namespace std;
    
    const int maxn=1e3+10;
    const int maxm=1e5+10;
    int n,m,x,cnt,ans;
    int head[maxn],dis[maxn],dis1[maxn],dis2[maxn];
    bool vis[maxn];
    struct node{
    	int v,w,nxt;
    }e[maxm];
    inline bool add(int u,int v,int w){
    	e[++cnt].v=v;
    	e[cnt].w=w;
    	e[cnt].nxt=head[u];
    	head[u]=cnt;
    }
    inline void Dijkstra(int u){
    	queue<int>q;
    	memset(vis,false,sizeof(vis));
    	memset(dis,0x3f,sizeof(dis));
    	dis[u]=0;
    	vis[u]=true;
    	q.push(u);
    	while(!q.empty()){
    		int x=q.front();
    		q.pop();
    		vis[x]=false;
    		for(int i=head[x];i;i=e[i].nxt){
    			if(dis[e[i].v]>dis[x]+e[i].w){
    				dis[e[i].v]=dis[x]+e[i].w;
    				if(!vis[e[i].v]){
    					vis[e[i].v]=true;
    					q.push(e[i].v);
    				}
    			}
    		}
    	}
    } 
    int main(){
    	scanf("%d%d%d",&n,&m,&x);
    	for(int i=1;i<=m;i++){
    		int u,v,w;
    		scanf("%d%d%d",&u,&v,&w);
    		add(u,v,w);
    	}
    	Dijkstra(x);
    	for(int i=1;i<=n;i++)dis1[i]=dis[i];
    	for(int i=1;i<=n;i++){
    		Dijkstra(i);
    		dis2[i]=dis[x];
    		ans=max(ans,dis1[i]+dis2[i]);
    	} 
    	printf("%d\n",ans);
    	return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
  • 相关阅读:
    华为机试真题 C++ 实现【迷宫问题】
    计算机网络 —— 运输层(UDP和TCP)
    STM32项目分享---MQTT智能门禁系统(含APP控制)
    Spring MVC框架中Formatter数据格式化的相关说明
    得数据者得天下!作为后端开发必备技能之一的MySQL,这份十多年经验总结的应用实战与性能调优我想你肯定是需要的!
    我的创作纪念日———C/C++之动态内存管理
    [附源码]计算机毕业设计springboot餐馆点餐管理系统
    MQ---第六篇
    C#:基本语法
    人工智能的十个重大数理问题
  • 原文地址:https://blog.csdn.net/weixin_42178241/article/details/126012588