• MindSpore版本问题:1.1版本下的报错,在1.0版本并未报错,求解


    问题描述:

    【功能模块】

    【操作步骤&问题现象】

    前向过程中报错,然后一直输出

    [WARNING] MD(121071,python):2021-03-21-22:06:10.264.793 [mindspore/ccsrc/minddata/dataset/util/task.cc:148] Join] GeneratorOp(ID:2) Thread ID 281472283959776 is not responding. Interrupt again

    [WARNING] MD(121071,python):2021-03-21-22:06:11.265.062 [mindspore/ccsrc/minddata/dataset/util/task.cc:148] Join] GeneratorOp(ID:2) Thread ID 281472283959776 is not responding. Interrupt again

    [WARNING] MD(121071,python):2021-03-21-22:06:12.265.344 [mindspore/ccsrc/minddata/dataset/util/task.cc:148] Join] GeneratorOp(ID:2) Thread ID 281472283959776 is not responding. Interrupt again

    [WARNING] MD(121071,python):2021-03-21-22:06:13.265.507 [mindspore/ccsrc/minddata/dataset/util/task.cc:148] Join] GeneratorOp(ID:2) Thread ID 281472283959776 is not responding. Interrupt again

    【截图信息】

    【日志信息】(可选,上传日志内容或者附件)

    [ERROR] PIPELINE(121071,python):2021-03-21-22:06:06.336.655 [mindspore/ccsrc/pipeline/jit/pipeline.cc:565] Compile]

    The function call stack (See file 'analyze_fail.dat' for details):

    # 0 In file /home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/train/dataset_helper.py(87)

                return self.network(*outputs)

                       ^

    # 1 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/network_define_pretrain.py(71)

            if self.reduce_flag:

    # 2 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/network_define_pretrain.py(70)

            grads = self.grad(self.net_with_loss, weights)(data1, data2, data3, label)

                    ^

    # 3 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/network_define_pretrain.py(24)

        def construct(self, data1, data2, data3, label):

    # 4 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/network_define_pretrain.py(26)

            feature1, feature2, feature3 = self._backbone(data)

                                           ^

    # 5 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(317)

            if self.pretrain:

            ^

    # 6 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(318)

                if self.use_MLP:

    # 7 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(322)

                    out = self.end_point(out)

                          ^

    # 8 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(315)

            out = self.flatten(out)

                  ^

    # 9 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(314)

            out = self.mean(c5, (2, 3))

                  ^

    # 10 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(312)

            c5 = self.layer4(c4)

                 ^

    # 11 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(311)

            c4 = self.layer3(c3)

                 ^

    # 12 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(310)

            c3 = self.layer2(c2)

                 ^

    # 13 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(309)

            c2 = self.layer1(c1)

                 ^

    # 14 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(308)

            c1 = self.maxpool(x)

                 ^

    # 15 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(307)

            x = self.relu(x)

                ^

    # 16 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(306)

            x = self.bn1(x)

                ^

    # 17 In file /home/tuyanlun/code/mindspore_r1.0/hpa/src/resnet.py(305)

            x = self.conv1(x)

                ^

    # 18 In file /home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/nn/layer/conv.py(254)

            if self.has_bias:

    # 19 In file /home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/nn/layer/conv.py(253)

            output = self.conv2d(x, self.weight)

                     ^

    Traceback (most recent call last):

      File "/home/tuyanlun/code/mindspore_r1.0/hpa/scripts/../pretrain.py", line 147, in

        model.train(config.epochs, dataset, callbacks=cb, dataset_sink_mode=dataset_sink_mode)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/train/model.py", line 592, in train

        sink_size=sink_size)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/train/model.py", line 391, in _train

        self._train_dataset_sink_process(epoch, train_dataset, list_callback, cb_params, sink_size)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/train/model.py", line 452, in _train_dataset_sink_process

        outputs = self._train_network(*inputs)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/nn/cell.py", line 322, in __call__

        out = self.compile_and_run(*inputs)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/nn/cell.py", line 578, in compile_and_run

        self.compile(*inputs)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/nn/cell.py", line 565, in compile

        _executor.compile(self, *inputs, phase=self.phase, auto_parallel_mode=self._auto_parallel_mode)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/common/api.py", line 505, in compile

        result = self._executor.compile(obj, args_list, phase, use_vm)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/ops/primitive.py", line 401, in __infer__

        out[track] = fn(*(x[track] for x in args))

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/ops/operations/nn_ops.py", line 1211, in infer_shape

        validator.check_equal_int(len(x_shape_norm), 4, "x rank", self.name)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/_checkparam.py", line 239, in check_equal_int

        return check_number(arg_value, value, Rel.EQ, int, arg_name, prim_name)

      File "/home/tuyanlun/archiconda3/envs/ms1.0/lib/python3.7/site-packages/mindspore/_checkparam.py", line 147, in check_number

        raise type_except(f'{arg_name} {prim_name} should be an {arg_type.__name__} and must {rel_str}, '

    ValueError: `x rank` in `Conv2D` should be an int and must == 4, but got `5` with type `int`.

    解决方案:

    "ValueError: `x rank` in `Conv2D` should be an int and must == 4, but got `5` with type `int`."

    卷积不支持5维输入,这个报错是合理的。

    改变x的输入为4维

  • 相关阅读:
    工业物联网蓝牙安全及基于标识算法的分布式鉴权技术研究
    了解Prop的使用
    spring-cloud和spring-cloud-alibaba的关系
    NEON优化:性能优化常见问题QA
    音视频数字化(视频的数字化)
    computer architecture simulator汇总
    Android App ~ LiveData
    Flutter 混合开发调试
    基于jsp+mysql+ssm大学生社交平台-计算机毕业设计
    ZJU Beamer学习手册(二)
  • 原文地址:https://blog.csdn.net/skytttttt9394/article/details/126015079