• 动手学深度学习PyTorch(六):卷积神经网络


    1.二维卷积层

    卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本章中介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本节中,我们将介绍简单形式的二维卷积层的工作原理。

    1.1 二维互相关运算

    虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。在二维卷积层中,一个二维输入数组和一个二维核(kernel)数组通过互相关运算输出一个二维数组。 我们用一个具体例子来解释二维互相关运算的含义。如图5.1所示,输入是一个高和宽均为3的二维数组。我们将该数组的形状记为3x3或(3,3)。核数组的高和宽分别为2。该数组在卷积计算中又称卷积核或过滤器(filter)。卷积核窗口(又称卷积窗口)的形状取决于卷积核的高和宽,即。图5.1中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0x0 + 1x1 + 3x2 + 4x3 = 19。
    在这里插入图片描述

    在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应位置的元素。图5.1中的输出数组高和宽分别为2,其中的4个元素由二维互相关运算得出:
    0x0 + 1x1 + 3x2 + 4x3 = 19,1x0 + 2x1 + 4x2 + 5x3=25,3x0 + 4x1 + 6x2 + 7x3 = 37,4x0 + 5x1 + 7x2 + 8x3 = 43
    下面我们将上述过程实现在corr2d函数里。它接受输入数组X与核数组K,并输出数组Y。

    import torch 
    from torch import nn
    
    def corr2d(X, K):  
        h, w = K.shape
        Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
        for i in range(Y.shape[0]):
            for j in range(Y.shape[1]):
                Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
        return Y
    
    X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
    K = torch.tensor([[0, 1], [2, 3]])
    corr2d(X, K)
    
    >>> tensor([[19., 25.],
            [37., 43.]])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    1.2 二维卷积层

    二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏差来得到输出。卷积层的模型参数包括了卷积核和标量偏差。在训练模型的时候,通常我们先对卷积核随机初始化,然后不断迭代卷积核和偏差。

    下面基于corr2d函数来实现一个自定义的二维卷积层。在构造函数__init__里我们声明weight和bias这两个模型参数。前向计算函数forward则是直接调用corr2d函数再加上偏差。

    class Conv2D(nn.Module):
        def __init__(self, kernel_size):
            super(Conv2D, self).__init__()
            self.weight = nn.Parameter(torch.randn(kernel_size))
            self.bias = nn.Parameter(torch.randn(1))
    
        def forward(self, x):
            return corr2d(x, self.weight) + self.bias
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    1.3 互相关运算和卷积运算

    卷积运算与互相关运算类似。为了得到卷积运算的输出,我们只需将核数组左右翻转并上下翻转,再与输入数组做互相关运算。可见,卷积运算和互相关运算虽然类似,但如果它们使用相同的核数组,对于同一个输入,输出往往并不相同。在深度学习中核数组都是学出来的:卷积层无论使用互相关运算或卷积运算都不影响模型预测时的输出,因而,可以使用互相关运算替代卷积运算。

    2.池化层

    同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出。不同于卷积层里计算输入和核的互相关性,池化层直接计算池化窗口内元素的最大值或者平均值。该运算也分别叫做最大池化或平均池化。在二维最大池化中,池化窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当池化窗口滑动到某一位置时,窗口中的输入子数组的最大值即输出数组中相应位置的元素。
    在这里插入图片描述

    上图展示了池化窗口形状为的最大池化,阴影部分为第一个输出元素及其计算所使用的输入元素。输出数组的高和宽分别为2,其中的4个元素由取最大值运算得出。
    二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为pxq的池化层称为pxq池化层,其中的池化运算叫作pxq池化。

    import torch
    from torch import nn
    
    def pool2d(X, pool_size, mode='max'):
        X = X.float()
        p_h, p_w = pool_size
        Y = torch.zeros(X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)
        for i in range(Y.shape[0]):
            for j in range(Y.shape[1]):
                if mode == 'max':
                    Y[i, j] = X[i: i + p_h, j: j + p_w].max()
                elif mode == 'avg':
                    Y[i, j] = X[i: i + p_h, j: j + p_w].mean()       
        return Y
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 最大池化和平均池化分别取池化窗口中输入元素的最大值和平均值作为输出。
    • 池化层的一个主要作用是缓解卷积层对位置的过度敏感性。
    • 可以指定池化层的填充和步幅。
    • 池化层的输出通道数跟输入通道数相同。

    3.卷积神经网络LeNet

    本节将介绍一个早期用来识别手写数字图像的卷积神经网络:LeNet。这个名字来源于LeNet论文的第一作者Yann LeCun。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的结果。这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知。LeNet的网络结构如下图所示:
    在这里插入图片描述

    LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。

    卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第一个卷积层的输入的高和宽要小,所以增加输出通道使两个卷积层的参数尺寸类似。卷积层块的两个最大池化层的窗口形状均为,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。

    卷积层块的输出形状为(批量大小, 通道, 高, 宽)。当卷积层块的输出传入全连接层块时,全连接层块会将小批量中每个样本变平(flatten)。也就是说,全连接层的输入形状将变成二维,其中第一维是小批量中的样本,第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积。全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

    import time
    import torch
    from torch import nn, optim
    
    import sys
    sys.path.append("..") 
    import d2lzh_pytorch as d2l
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    class LeNet(nn.Module):
        def __init__(self):
            super(LeNet, self).__init__()
            self.conv = nn.Sequential(
                nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
                nn.Sigmoid(),
                nn.MaxPool2d(2, 2), # kernel_size, stride
                nn.Conv2d(6, 16, 5),
                nn.Sigmoid(),
                nn.MaxPool2d(2, 2)
            )
            self.fc = nn.Sequential(
                nn.Linear(16*4*4, 120),
                nn.Sigmoid(),
                nn.Linear(120, 84),
                nn.Sigmoid(),
                nn.Linear(84, 10)
            )
    
        def forward(self, img):
            feature = self.conv(img)
            output = self.fc(feature.view(img.shape[0], -1))
            return output
    
    net = LeNet()
    print(net)
    >>> LeNet(
      (conv): Sequential(
        (0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
        (1): Sigmoid()
        (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        (3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
        (4): Sigmoid()
        (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (fc): Sequential(
        (0): Linear(in_features=256, out_features=120, bias=True)
        (1): Sigmoid()
        (2): Linear(in_features=120, out_features=84, bias=True)
        (3): Sigmoid()
        (4): Linear(in_features=84, out_features=10, bias=True)
      )
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52

    4.深度卷积神经网络AlexNet

    在这里插入图片描述

    AlexNet与LeNet的设计理念非常相似,但也有显著的区别:
    第一,与相对较小的LeNet相比,AlexNet包含8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。下面我们来详细描述这些层的设计。

    AlexNet第一层中的卷积窗口形状是。因为ImageNet中绝大多数图像的高和宽均比MNIST图像的高和宽大10倍以上,ImageNet图像的物体占用更多的像素,所以需要更大的卷积窗口来捕获物体。第二层中的卷积窗口形状减小到,之后全采用。此外,第一、第二和第五个卷积层之后都使用了窗口形状为、步幅为2的最大池化层。而且,AlexNet使用的卷积通道数也大于LeNet中的卷积通道数数十倍。

    紧接着最后一个卷积层的是两个输出个数为4096的全连接层。这两个巨大的全连接层带来将近1 GB的模型参数。由于早期显存的限制,最早的AlexNet使用双数据流的设计使一个GPU只需要处理一半模型。幸运的是,显存在过去几年得到了长足的发展,因此通常我们不再需要这样的特别设计了。

    第二,AlexNet将sigmoid激活函数改成了更加简单的ReLU激活函数。一方面,ReLU激活函数的计算更简单,例如它并没有sigmoid激活函数中的求幂运算。另一方面,ReLU激活函数在不同的参数初始化方法下使模型更容易训练。这是由于当sigmoid激活函数输出极接近0或1时,这些区域的梯度几乎为0,从而造成反向传播无法继续更新部分模型参数;而ReLU激活函数在正区间的梯度恒为1。因此,若模型参数初始化不当,sigmoid函数可能在正区间得到几乎为0的梯度,从而令模型无法得到有效训练。

    第三,AlexNet通过丢弃法来控制全连接层的模型复杂度,而LeNet并没有使用丢弃法。

    第四,AlexNet引入了大量的图像增广,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

    import time
    import torch
    from torch import nn, optim
    import torchvision
    
    import sys
    sys.path.append("..") 
    import d2lzh_pytorch as d2l
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    class AlexNet(nn.Module):
        def __init__(self):
            super(AlexNet, self).__init__()
            self.conv = nn.Sequential(
                nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, padding
                nn.ReLU(),
                nn.MaxPool2d(3, 2), # kernel_size, stride
                # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
                nn.Conv2d(96, 256, 5, 1, 2),
                nn.ReLU(),
                nn.MaxPool2d(3, 2),
                # 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
                # 前两个卷积层后不使用池化层来减小输入的高和宽
                nn.Conv2d(256, 384, 3, 1, 1),
                nn.ReLU(),
                nn.Conv2d(384, 384, 3, 1, 1),
                nn.ReLU(),
                nn.Conv2d(384, 256, 3, 1, 1),
                nn.ReLU(),
                nn.MaxPool2d(3, 2)
            )
             # 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合
            self.fc = nn.Sequential(
                nn.Linear(256*5*5, 4096),
                nn.ReLU(),
                nn.Dropout(0.5),
                nn.Linear(4096, 4096),
                nn.ReLU(),
                nn.Dropout(0.5),
                # 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
                nn.Linear(4096, 10),
            )
    
        def forward(self, img):
            feature = self.conv(img)
            output = self.fc(feature.view(img.shape[0], -1))
            return output
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47

    5.使用重复元素的网络VGG

    5.1 VGG块

    VGG块的组成规律是:连续使用数个相同的填充为1、窗口形状为3x3的卷积层后接上一个步幅为2、窗口形状为2x2的最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半。我们使用vgg_block函数来实现这个基础的VGG块,它可以指定卷积层的数量和输入输出通道数。

    import time
    import torch
    from torch import nn, optim
    
    import sys
    sys.path.append("..") 
    import d2lzh_pytorch as d2l
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    def vgg_block(num_convs, in_channels, out_channels):
        blk = []
        for i in range(num_convs):
            if i == 0:
                blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
            else:
                blk.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
            blk.append(nn.ReLU())
        blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这里会使宽高减半
        return nn.Sequential(*blk)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    5.2 VGG网络

    与AlexNet和LeNet一样,VGG网络由卷积层模块后接全连接层模块构成。卷积层模块串联数个vgg_block,其超参数由变量conv_arch定义。该变量指定了每个VGG块里卷积层个数和输入输出通道数。全连接模块则跟AlexNet中的一样。

    现在我们构造一个VGG网络。它有5个卷积块,前2块使用单卷积层,而后3块使用双卷积层。第一块的输入输出通道分别是1(因为下面要使用的Fashion-MNIST数据的通道数为1)和64,之后每次对输出通道数翻倍,直到变为512。因为这个网络使用了8个卷积层和3个全连接层,所以经常被称为VGG-11。

    conv_arch = ((1, 1, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512))
    # 经过5个vgg_block, 宽高会减半5次, 变成 224/32 = 7
    fc_features = 512 * 7 * 7 # c * w * h
    fc_hidden_units = 4096 # 任意
    
    
    def vgg(conv_arch, fc_features, fc_hidden_units=4096):
        net = nn.Sequential()
        # 卷积层部分
        for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
            # 每经过一个vgg_block都会使宽高减半
            net.add_module("vgg_block_" + str(i+1), vgg_block(num_convs, in_channels, out_channels))
        # 全连接层部分
        net.add_module("fc", nn.Sequential(d2l.FlattenLayer(),
                                     nn.Linear(fc_features, fc_hidden_units),
                                     nn.ReLU(),
                                     nn.Dropout(0.5),
                                     nn.Linear(fc_hidden_units, fc_hidden_units),
                                     nn.ReLU(),
                                     nn.Dropout(0.5),
                                     nn.Linear(fc_hidden_units, 10)
                                    ))
        return net
    
    net = vgg(conv_arch, fc_features, fc_hidden_units)
    X = torch.rand(1, 1, 224, 224)
    
    # named_children获取一级子模块及其名字(named_modules会返回所有子模块,包括子模块的子模块)
    for name, blk in net.named_children(): 
        X = blk(X)
        print(name, 'output shape: ', X.shape)
    
    >>> vgg_block_1 output shape:  torch.Size([1, 64, 112, 112])
    >>> vgg_block_2 output shape:  torch.Size([1, 128, 56, 56])
    >>> vgg_block_3 output shape:  torch.Size([1, 256, 28, 28])
    >>> vgg_block_4 output shape:  torch.Size([1, 512, 14, 14])
    >>> vgg_block_5 output shape:  torch.Size([1, 512, 7, 7])
    >>> fc output shape:  torch.Size([1, 10])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38

    可以看到,每次我们将输入的高和宽减半,直到最终高和宽变成7后传入全连接层。与此同时,输出通道数每次翻倍,直到变成512。因为每个卷积层的窗口大小一样,所以每层的模型参数尺寸和计算复杂度与输入高、输入宽、输入通道数和输出通道数的乘积成正比。VGG这种高和宽减半以及通道翻倍的设计使得多数卷积层都有相同的模型参数尺寸和计算复杂度。

    6.网络中的网络NiN

    LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽(增加通道数)和加深。本节网络中的网络(NiN)提出了另外一个思路,即串联多个由卷积层和“全连接”层构成的小网络来构建一个深层网络。

    6.1 NiN块

    卷积层的输入和输出通常是四维数组(样本,通道,高,宽),而全连接层的输入和输出则通常是二维数组(样本,特征)。如果想在全连接层后再接上卷积层,则需要将全连接层的输出变换为四维。而1x1卷积层可以看成全连接层,其中空间维度(高和宽)上的每个元素相当于样本,通道相当于特征。因此,NiN使用1x1卷积层来替代全连接层,从而使空间信息能够自然传递到后面的层中去。
    在这里插入图片描述

    上图中左图是AlexNet和VGG的网络结构局部,右图是NiN的网络结构局部。
    NiN块是NiN中的基础块。它由一个1x1卷积层加两个充当全连接层的卷积层串联而成。其中第一个卷积层的超参数可以自行设置,而第二和第三个卷积层的超参数一般是固定的。

    import time
    import torch
    from torch import nn, optim
    
    import sys
    sys.path.append("..") 
    import d2lzh_pytorch as d2l
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    def nin_block(in_channels, out_channels, kernel_size, stride, padding):
        blk = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
                            nn.ReLU(),
                            nn.Conv2d(out_channels, out_channels, kernel_size=1),
                            nn.ReLU(),
                            nn.Conv2d(out_channels, out_channels, kernel_size=1),
                            nn.ReLU())
        return blk
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    6.2 NiN模型

    NiN是在AlexNet问世不久后提出的。它们的卷积层设定有类似之处。NiN使用卷积窗口形状分别为11x11、5x5和3x3的卷积层,相应的输出通道数也与AlexNet中的一致。每个NiN块后接一个步幅为2、窗口形状为3x3的最大池化层。

    除使用NiN块以外,NiN还有一个设计与AlexNet显著不同:NiN去掉了AlexNet最后的3个全连接层,取而代之地,NiN使用了输出通道数等于标签类别数的NiN块,然后使用全局平均池化层对每个通道中所有元素求平均并直接用于分类。这里的全局平均池化层即窗口形状等于输入空间维形状的平均池化层。NiN的这个设计的好处是可以显著减小模型参数尺寸,从而缓解过拟合。然而,该设计有时会造成获得有效模型的训练时间的增加。

    import torch.nn.functional as F
    class GlobalAvgPool2d(nn.Module):
        # 全局平均池化层可通过将池化窗口形状设置成输入的高和宽实现
        def __init__(self):
            super(GlobalAvgPool2d, self).__init__()
        def forward(self, x):
            return F.avg_pool2d(x, kernel_size=x.size()[2:])
    
    net = nn.Sequential(
        nin_block(1, 96, kernel_size=11, stride=4, padding=0),
        nn.MaxPool2d(kernel_size=3, stride=2),
        nin_block(96, 256, kernel_size=5, stride=1, padding=2),
        nn.MaxPool2d(kernel_size=3, stride=2),
        nin_block(256, 384, kernel_size=3, stride=1, padding=1),
        nn.MaxPool2d(kernel_size=3, stride=2), 
        nn.Dropout(0.5),
        # 标签类别数是10
        nin_block(384, 10, kernel_size=3, stride=1, padding=1),
        GlobalAvgPool2d(), 
        # 将四维的输出转成二维的输出,其形状为(批量大小, 10)
        d2l.FlattenLayer())
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    7.含并行连结的网络GoogLeNet

    在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet的网络结构大放异彩。它虽然在名字上向LeNet致敬,但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思想,并在此基础上做了很大改进。在随后的几年里,研究人员对GoogLeNet进行了数次改进,本节将介绍这个模型系列的第一个版本。

    7.1 Inception块

    GoogLeNet中的基础卷积块叫作Inception块,得名于同名电影《盗梦空间》(Inception)。与上一节介绍的NiN块相比,这个基础块在结构上更加复杂。
    在这里插入图片描述

    由上图可以看出,Inception块里有4条并行的线路。前3条线路使用窗口大小分别是1x1、3x3和5x5的卷积层来抽取不同空间尺寸下的信息,其中中间2个线路会对输入先做1x1卷积来减少输入通道数,以降低模型复杂度。第四条线路则使用3x3最大池化层,后接1x1卷积层来改变通道数。4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结,并输入接下来的层中去。

    Inception块中可以自定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

    import time
    import torch
    from torch import nn, optim
    import torch.nn.functional as F
    
    import sys
    sys.path.append("..") 
    import d2lzh_pytorch as d2l
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    class Inception(nn.Module):
        # c1 - c4为每条线路里的层的输出通道数
        def __init__(self, in_c, c1, c2, c3, c4):
            super(Inception, self).__init__()
            # 线路1,单1 x 1卷积层
            self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
            # 线路2,1 x 1卷积层后接3 x 3卷积层
            self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)
            self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
            # 线路3,1 x 1卷积层后接5 x 5卷积层
            self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)
            self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
            # 线路4,3 x 3最大池化层后接1 x 1卷积层
            self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
            self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)
    
        def forward(self, x):
            p1 = F.relu(self.p1_1(x))
            p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
            p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
            p4 = F.relu(self.p4_2(self.p4_1(x)))
            return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维上连结输出
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    7.2 GoogLeNet模型

    GoogLeNet跟VGG一样,在主体卷积部分中使用5个模块(block),每个模块之间使用步幅为2的3x3最大池化层来减小输出高宽。第一模块使用一个64通道的7x7卷积层。
    第二模块使用2个卷积层:首先是64通道的1x1卷积层,然后是将通道增大3倍的3x3卷积层。它对应Inception块中的第二条线路。
    第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为64+128+32+32=256,其中4条线路的输出通道数比例为64:128:32:32=2:4:1:1。其中第二、第三条线路先分别将输入通道数减小至96/192=1/2和16/192=1/12后,再接上第二层卷积层。第二个Inception块输出通道数增至128+192+96+64=480,每条线路的输出通道数之比为128:192:96:64=4:6:3:2。其中第二、第三条线路先分别将输入通道数减小至128/256=1/2和32/256=1/8。
    第四模块更加复杂。它串联了5个Inception块,其输出通道数分别是512、512、512、528和832。这些线路的通道数分配和第三模块中的类似,首先含3x3卷积层的第二条线路输出最多通道,其次是仅含1x1卷积层的第一条线路,之后是含5x5卷积层的第三条线路和含3x3最大池化层的第四条线路。其中第二、第三条线路都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。
    第五模块有输出通道数为832和1024的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。

    b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                       nn.ReLU(),
                       nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    
    b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                       nn.Conv2d(64, 192, kernel_size=3, padding=1),
                       nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    
    b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                       Inception(256, 128, (128, 192), (32, 96), 64),
                       nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    
    b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                       Inception(512, 160, (112, 224), (24, 64), 64),
                       Inception(512, 128, (128, 256), (24, 64), 64),
                       Inception(512, 112, (144, 288), (32, 64), 64),
                       Inception(528, 256, (160, 320), (32, 128), 128),
                       nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    
    b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                       Inception(832, 384, (192, 384), (48, 128), 128),
                       d2l.GlobalAvgPool2d())
    
    net = nn.Sequential(b1, b2, b3, b4, b5, 
                        d2l.FlattenLayer(), nn.Linear(1024, 10))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    8.残差网络ResNet

    8.1 批量归一化

    在模型训练时,批量归一化利用小批量上的均值和标准差,不断调整神经网络的中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。

    import time
    import torch
    from torch import nn, optim
    import torch.nn.functional as F
    
    import sys
    sys.path.append("..") 
    import d2lzh_pytorch as d2l
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    def batch_norm(is_training, X, gamma, beta, moving_mean, moving_var, eps, momentum):
        # 判断当前模式是训练模式还是预测模式
        if not is_training:
            # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
            X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
        else:
            assert len(X.shape) in (2, 4)
            if len(X.shape) == 2:
                # 使用全连接层的情况,计算特征维上的均值和方差
                mean = X.mean(dim=0)
                var = ((X - mean) ** 2).mean(dim=0)
            else:
                # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
                # X的形状以便后面可以做广播运算
                mean = X.mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
                var = ((X - mean) ** 2).mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
            # 训练模式下用当前的均值和方差做标准化
            X_hat = (X - mean) / torch.sqrt(var + eps)
            # 更新移动平均的均值和方差
            moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
            moving_var = momentum * moving_var + (1.0 - momentum) * var
        Y = gamma * X_hat + beta  # 拉伸和偏移
        return Y, moving_mean, moving_var
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33

    8.2 残差块

    如下图所示,设输入为x。假设我们希望学出的理想映射为f(x),从而作为下图上方激活函数的输入。左图虚线框中的部分需要直接拟合出该映射f(x),而右图虚线框中的部分则需要拟合出有关恒等映射的残差映射f(x)-x。残差映射在实际中往往更容易优化。以本节开头提到的恒等映射作为我们希望学出的理想映射f(x)。我们只需将下图中右图虚线框内上方的加权运算(如仿射)的权重和偏差参数学成0,那么f(x)即为恒等映射。实际中,当理想映射f(x)极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。下图右图也是ResNet的基础块,即残差块(residual block)。在残差块中,输入可通过跨层的数据线路更快地向前传播。
    在这里插入图片描述

    ResNet沿用了VGG全3x3卷积层的设计。残差块里首先有2个有相同输出通道数的3x3卷积层。每个卷积层后接一个批量归一化层和ReLU激活函数。然后我们将输入跳过这两个卷积运算后直接加在最后的ReLU激活函数前。这样的设计要求两个卷积层的输出与输入形状一样,从而可以相加。如果想改变通道数,就需要引入一个额外的1x1卷积层来将输入变换成需要的形状后再做相加运算。

    残差块的实现如下。它可以设定输出通道数、是否使用额外的卷积层来修改通道数以及卷积层的步幅。

    import time
    import torch
    from torch import nn, optim
    import torch.nn.functional as F
    
    import sys
    sys.path.append("..") 
    import d2lzh_pytorch as d2l
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    class Residual(nn.Module):  # 本类已保存在d2lzh_pytorch包中方便以后使用
        def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1):
            super(Residual, self).__init__()
            self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride)
            self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
            if use_1x1conv:
                self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride)
            else:
                self.conv3 = None
            self.bn1 = nn.BatchNorm2d(out_channels)
            self.bn2 = nn.BatchNorm2d(out_channels)
    
        def forward(self, X):
            Y = F.relu(self.bn1(self.conv1(X)))
            Y = self.bn2(self.conv2(Y))
            if self.conv3:
                X = self.conv3(X)
            return F.relu(Y + X)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    8.3 ResNet模型

    ResNet的前两层跟之前介绍的GoogLeNet中的一样:在输出通道数为64、步幅为2的卷积层后接步幅为2的的最大池化层。不同之处在于ResNet每个卷积层后增加的批量归一化层。

    def resnet_block(in_channels, out_channels, num_residuals, first_block=False):
        if first_block:
            assert in_channels == out_channels # 第一个模块的通道数同输入通道数一致
        blk = []
        for i in range(num_residuals):
            if i == 0 and not first_block:
                blk.append(Residual(in_channels, out_channels, use_1x1conv=True, stride=2))
            else:
                blk.append(Residual(out_channels, out_channels))
        return nn.Sequential(*blk)
    
    net = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
            nn.BatchNorm2d(64), 
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    
    net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
    net.add_module("resnet_block2", resnet_block(64, 128, 2))
    net.add_module("resnet_block3", resnet_block(128, 256, 2))
    net.add_module("resnet_block4", resnet_block(256, 512, 2))
    
    net.add_module("global_avg_pool", d2l.GlobalAvgPool2d()) # GlobalAvgPool2d的输出: (Batch, 512, 1, 1)
    net.add_module("fc", nn.Sequential(d2l.FlattenLayer(), nn.Linear(512, 10))) 
    
    X = torch.rand((1, 1, 224, 224))
    for name, layer in net.named_children():
        X = layer(X)
        print(name, ' output shape:\t', X.shape)
    
    >>> 0  output shape:	 torch.Size([1, 64, 112, 112])
    >>> 1  output shape:	 torch.Size([1, 64, 112, 112])
    >>> 2  output shape:	 torch.Size([1, 64, 112, 112])
    >>> 3  output shape:	 torch.Size([1, 64, 56, 56])
    >>> resnet_block1  output shape:	 torch.Size([1, 64, 56, 56])
    >>> resnet_block2  output shape:	 torch.Size([1, 128, 28, 28])
    >>> resnet_block3  output shape:	 torch.Size([1, 256, 14, 14])
    >>> resnet_block4  output shape:	 torch.Size([1, 512, 7, 7])
    >>> global_avg_pool  output shape:	 torch.Size([1, 512, 1, 1])
    >>> fc  output shape:	 torch.Size([1, 10])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    9.稠密连接网络DenseNet

    ResNet中的跨层连接设计引申出了数个后续工作。本节介绍稠密连接网络(DenseNet)。 它与ResNet的主要区别如下图所示。
    在这里插入图片描述

    图中将部分前后相邻的运算抽象为模块和模块。与ResNet的主要区别在于,DenseNet里模块的输出不是像ResNet那样和模块的输出相加,而是在通道维上连结。这样模块的输出可以直接传入模块后面的层。在这个设计里,模块直接跟模块后面的所有层连接在了一起。这也是它被称为“稠密连接”的原因。

    DenseNet的主要构建模块是稠密块(dense block)和过渡层(transition layer)。前者定义了输入和输出是如何连结的,后者则用来控制通道数,使之不过大。

    9.1 稠密块

    DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构,我们首先在conv_block函数里实现这个结构。

    import time
    import torch
    from torch import nn, optim
    import torch.nn.functional as F
    
    import sys
    sys.path.append("..") 
    import d2lzh_pytorch as d2l
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    def conv_block(in_channels, out_channels):
        blk = nn.Sequential(nn.BatchNorm2d(in_channels), 
                            nn.ReLU(),
                            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        return blk
    
    class DenseBlock(nn.Module):
        def __init__(self, num_convs, in_channels, out_channels):
            super(DenseBlock, self).__init__()
            net = []
            for i in range(num_convs):
                in_c = in_channels + i * out_channels
                net.append(conv_block(in_c, out_channels))
            self.net = nn.ModuleList(net)
            self.out_channels = in_channels + num_convs * out_channels # 计算输出通道数
    
        def forward(self, X):
            for blk in self.net:
                Y = blk(X)
                X = torch.cat((X, Y), dim=1)  # 在通道维上将输入和输出连结
            return X
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31

    9.2 过渡层

    由于每个稠密块都会带来通道数的增加,使用过多则会带来过于复杂的模型。过渡层用来控制模型复杂度。它通过卷积层来减小通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。

    def transition_block(in_channels, out_channels):
        blk = nn.Sequential(
                nn.BatchNorm2d(in_channels), 
                nn.ReLU(),
                nn.Conv2d(in_channels, out_channels, kernel_size=1),
                nn.AvgPool2d(kernel_size=2, stride=2))
        return blk
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    9.3 DenseNet模型

    net = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
            nn.BatchNorm2d(64), 
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    
    num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
    num_convs_in_dense_blocks = [4, 4, 4, 4]
    
    for i, num_convs in enumerate(num_convs_in_dense_blocks):
        DB = DenseBlock(num_convs, num_channels, growth_rate)
        net.add_module("DenseBlosk_%d" % i, DB)
        # 上一个稠密块的输出通道数
        num_channels = DB.out_channels
        # 在稠密块之间加入通道数减半的过渡层
        if i != len(num_convs_in_dense_blocks) - 1:
            net.add_module("transition_block_%d" % i, transition_block(num_channels, num_channels // 2))
            num_channels = num_channels // 2
    
    net.add_module("BN", nn.BatchNorm2d(num_channels))
    net.add_module("relu", nn.ReLU())
    net.add_module("global_avg_pool", d2l.GlobalAvgPool2d()) # GlobalAvgPool2d的输出: (Batch, num_channels, 1, 1)
    net.add_module("fc", nn.Sequential(d2l.FlattenLayer(), nn.Linear(num_channels, 10))) 
    
    
    X = torch.rand((1, 1, 96, 96))
    for name, layer in net.named_children():
        X = layer(X)
        print(name, ' output shape:\t', X.shape)
    
    >>> 0  output shape:	 torch.Size([1, 64, 48, 48])
    >>> 1  output shape:	 torch.Size([1, 64, 48, 48])
    >>> 2  output shape:	 torch.Size([1, 64, 48, 48])
    >>> 3  output shape:	 torch.Size([1, 64, 24, 24])
    >>> DenseBlosk_0  output shape:	 torch.Size([1, 192, 24, 24])
    >>> transition_block_0  output shape:	 torch.Size([1, 96, 12, 12])
    >>> DenseBlosk_1  output shape:	 torch.Size([1, 224, 12, 12])
    >>> transition_block_1  output shape:	 torch.Size([1, 112, 6, 6])
    >>> DenseBlosk_2  output shape:	 torch.Size([1, 240, 6, 6])
    >>> transition_block_2  output shape:	 torch.Size([1, 120, 3, 3])
    >>> DenseBlosk_3  output shape:	 torch.Size([1, 248, 3, 3])
    >>> BN  output shape:	 torch.Size([1, 248, 3, 3])
    >>> relu  output shape:	 torch.Size([1, 248, 3, 3])
    >>> global_avg_pool  output shape:	 torch.Size([1, 248, 1, 1])
    >>> fc  output shape:	 torch.Size([1, 10])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
  • 相关阅读:
    跨境电商卖家只青睐亚马逊?其实你不知道,“备胎”早已选好!(Starday)
    访客登记信息不全?线上预约成新潮流
    Go内存管理逃逸分析
    Dijkstra 邻接表表示算法 | 贪心算法实现--附C++/JAVA实现源码
    2022年,是危机还是新的机遇?
    阿里P8整合深入理解Dubbo实战+Kafka+分布式设计核心原理内部手册
    windows下node更新
    spring-security-oauth2(授权模式入门简单使用)
    Python - inspect 模块的简单使用
    【uniapp基础篇】上传图片
  • 原文地址:https://blog.csdn.net/u013010473/article/details/125898661