给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。
示例:
1.确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
2.确定递推公式
if (s[i - 1] == t[j - 1]) -----> t中找到了一个字符在s中也出现了—> dp[i][j] = dp[i - 1][j - 1] + 1;
if (s[i - 1] != t[j - 1]) -----> 相当于t要删除元素,继续匹配 -------> dp[i][j] = dp[i][j - 1]
3.初始化
出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
dp[0][0] = 0;
dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0.
4. 确定遍历顺序
遍历顺序也应该是从上到下,从左到右
class Solution {
public boolean isSubsequence(String s, String t) {
//dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
int len1 = s.length();
int len2 = t.length();
int[][] dp = new int[len1+1][len2+1];
//初始化 dp[0][0] 和 dp[i][0] 均为零,不用拿出来单独初始化
for(int i = 1; i <= len1; i++){
for(int j =1; j <= len2; j++){
if(s.charAt(i-1) == t.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + 1;
}else{
dp[i][j] = dp[i][j-1];
}
}
}
return dp[len1][len2] == len1;
}
}
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中t出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)
示例:
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的s子序列 中 出现以j-1为结尾的t的个数为dp[i][j]。
2.确定递推公式
是要分析两种情况:
s[i - 1] 与 t[j - 1]相等
s[i - 1] 与 t[j - 1] 不相等
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]
(1) 当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
(2) 当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j] dp[i][j] = dp[i - 1][j];
3.初始化
dp[i][0] 和dp[0][j]是一定要初始化的。
dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。 出现空字符串的个数就是1。
dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。dp[0][j]一定都是0
4.确定遍历顺序
一定是从上到下,从左到右
class Solution {
public int numDistinct(String s, String t) {
//dp[i][j]:以i-1为结尾的s子序列 中 出现以j-1为结尾的t的个数为dp[i][j]。
int len1 = s.length();
int len2 = t.length();
int[][] dp = new int[len1+1][len2+1];
//初始化:dp[0][j]始终是0
for(int i = 0; i <= len1; i++){
dp[i][0] = 1;
}
for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if(s.charAt(i-1) == t.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
}else{
dp[i][j] = dp[i-1][j];
}
}
}
return dp[len1][len2];
}
}
给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例:
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
2 确定递推公式
(1)当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
(2)当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
3.初始化
dp[i][0] 和 dp[0][j]是一定要初始化的。
dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。
dp[0][j]的话同理
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
4.确定遍历顺序
递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
class Solution {
public int minDistance(String word1, String word2) {
//dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1+1][len2+1];
//初始化
for(int i = 0; i <= len1; i++){
dp[i][0] = i;
}
for(int j = 0; j <= len2; j++){
dp[0][j] = j;
}
for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if(word1.charAt(i-1) == word2.charAt(j-1)){
dp[i][j] = dp[i-1][j-1];
}else{
dp[i][j] = Math.min(dp[i-1][j-1]+2,Math.min(dp[i-1][j]+1,dp[i][j-1]+1));
}
}
}
return dp[len1][len2];
}
}
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例:
1.确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
2. 确定递推公式
if (word1[i - 1] == word2[j - 1])
不操作 -----> dp[i][j] = dp[i - 1][j - 1];
if (word1[i - 1] != word2[j - 1])
增
删
换
if (word1[i - 1] != word2[j - 1])
操作一:删除元素
word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作
dp[i][j] = dp[i - 1][j] + 1
操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作
dp[i][j] = dp[i][j - 1] + 1;
操作二:添加元素
**!!! word2添加一个元素,相当于word1删除一个元素,**例如 word1 = “ad” ,word2 = “a”,word1删除元素’d’ 和 word2添加一个元素’d’,变成word1=“a”, word2=“ad”, 最终的操作数是一样!
操作三:替换元素
word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增加元素,那么以下标i-2为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个替换元素的操作。同理,word2替换word2[j - 1],使其与word1[i - 1]相同,也是如下式子🦁
即 dp[i][j] = dp[i - 1][j - 1] + 1;
3.初始化
dp[i][0] 和 dp[0][j]
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i; 同理dp[0][j] = j;
4.确定遍历顺序
class Solution {
public int minDistance(String word1, String word2) {
//dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1+1][len2+1];
//初始化
for(int i = 0; i <= len1; i++){
dp[i][0] = i;
}
for(int j = 0; j <= len2; j++){
dp[0][j] = j;
}
for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if(word1.charAt(i-1) == word2.charAt(j-1)){
dp[i][j] = dp[i-1][j-1];
}else{
dp[i][j] = Math.min(Math.min(dp[i-1][j]+1,dp[i][j-1]+1),dp[i-1][j-1]+1);
}
}
}
return dp[len1][len2];
}
}