『youcans 的 OpenCV 例程300篇 - 总目录』
特征提取是指从原始特征中通过数学变换得到一组新的特征,以降低特征维数,消除相关性,减少无用信息。
特征提取分为线性映射方法和非线性映射方法。
主成分分析(Principal Components Analysis,PCA)是一种基于统计的数据降维方法,又称主元素分析、主分量分析。主成分分析只需要特征值分解,就可以对数据进行压缩、去噪,应用非常广泛。
众多原始变量之间往往具有一定的相关关系。这意味着相关变量所反映的信息有一定程度的重叠,因此可以用较少的综合指标聚合、反映众多原始变量所包含的全部信息或主要信息。主成分分析方法研究特征变量之间的相关性、相似性,将一组相关性高的高维变量转换为一组彼此独立、互不相关的低维变量,从而降低数据的维数。
主成分分析方法的思想是,将高维特征(p维)映射到低维空间(k维)上,新的低维特征是在原有的高维特征基础上通过线性组合而重构的,并具有相互正交的特性,称为主成分特性。
通过正交变换构造彼此正交的新的特征向量,这些特征向量组成了新的特征空间。将特征向量按特征值排序后,样本数据集中所包含的全部方差,大部分就包含在前几个特征向量中,其后的特征向量所含的方差很小。因此,可以只保留前 k个特征向量,而忽略其它的特征向量,实现对数据特征的降维处理。
主成分分析的基本步骤是:对原始数据归一化处理后求协方差矩阵,再对协方差矩阵求特征向量和特征值;对特征向量按特征值大小排序后,依次选取特征向量,直到选择的特征向量的方差占比满足要求为止。
主成分分析方法得到的主成分变量具有几个特点:(1)每个主成分变量都是原始变量的线性组合;(2)主成分的数目大大少于原始变量的数目;(3)主成分保留了原始变量的绝大多数信息;(4)各主成分变量之间彼此相互独立。
算法的基本流程如下:
(1)归一化处理,数据减去平均值;
(2)通过特征值分解,计算协方差矩阵;
(3)计算协方差矩阵的特征值和特征向量;
(4)将特征值从大到小排序;
(5)依次选取特征值最大的 k个特征向量作为主成分,直到其累计方差贡献率达到要求;
(6)将原始数据映射到选取的主成分空间,得到降维后的数据。
在图像处理中,把每幅二维图像拉伸为一维向量,即展平为一维数组。一组 m 幅图像就构造为一个 m 维向量,使用 Karhunen-Loève transform(KLT) 变换得到变换矩阵,选取特征值最大的 k个特征向量作为主成分,从而实现特征降维。
图像压缩过程是把一组原始图像变换成低维向量的过程,图像重建就是由低维向量变换重建图像组的过程。使用主成分分析进行图像压缩和重建会有少量信息损失,但可以把损失控制到很小。
SKlearn 工具包提供了多种降维分析方法。sklearn.decomposition.PCA 类是 PCA算法的具体实现,官网介绍详见:https://scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca
sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)
class sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False, svd_solver=‘auto’, tol=0.0, iterated_power=‘auto’, random_state=None)
PCA 类的主要参数:
PCA 类的主要属性:
PCA 类的主要方法:
SKlearn 工具包针对实际问题的特殊性,发展了各种改进算法,例如:
本例程的图像来自 R.C.Gonzalez 《数字图像处理(第四版)》P622 例11.16。本例的目的是说明如何使用主分量作为图像特征。
# # 14.16 特征描述之主成分分析 (sklearn)
from sklearn.decomposition import PCA
# 读取光谱图像组
img = cv2.imread("../images/Fig1138a.tif", flags=0)
height, width = img.shape[:2] # (564, 564)
nBands = 6 # 光谱波段种类
snBands = ['a','b','c','d','e','f'] # Fig1138a~f
imgMulti = np.zeros((height, width, nBands)) # (564, 564, 6)
Xmat = np.zeros((img.size, nBands)) # (318096, 6)
print(imgMulti.shape, Xmat.shape)
# 显示光谱图像组
# fig1 = plt.figure(figsize=(9, 6)) # 原始图像,6 个不同波段
# fig1.suptitle("Spectral image of multi bands by NASA")
for i in range(nBands):
path = "../images/Fig1138{}.tif".format(snBands[i])
imgMulti[:,:,i] = cv2.imread(path, flags=0) # 灰度图像
# ax1 = fig1.add_subplot(2,3,i+1)
# ax1.set_xticks([]), ax1.set_yticks([])
# ax1.imshow(imgMulti[:,:,i], 'gray') # 绘制光谱图像 snBands[i]
# plt.tight_layout()
# 主成分分析 (principal component analysis)
for i in range(nBands):
Xarray = imgMulti[:,:,i].flatten() # 转为一维数组
Xmat[:,i] = (Xarray - Xarray.mean()) / Xarray.std() # 数据标准化 (318096, 6)
m, p = Xmat.shape # m:训练集样本数量,p:特征维度数
modelPCA = PCA(n_components=0.95) # 建立 PCA 模型,设定主成分方差贡献率 95%
Xpca = modelPCA.fit_transform(Xmat) # 返回降维后的数据 (m,k)=(318096,3)
k = modelPCA.n_components_ # 主成分方差贡献率 95% 时的特征维数 k=3
print("number of samples: m=", m) # 样本集的样本数量 m=318096
print("number of features: p=", p) # 样本集的特征维数 p=6
print("number of PCA features: k=", k) # 降维后的特征维数,主成分个数 k=3
# print("principal axes in feature space:", modelPCA.components_) # 各主成分的主轴方向
print("explained variance:", modelPCA.explained_variance_.round(4)) # 各主成分的方差
print("explained variance ratio:", modelPCA.explained_variance_ratio_.round(4)) # 各主成分的方差贡献率
print("cumulative explained variance ratio:", np.cumsum(modelPCA.explained_variance_ratio_).round(4))
# 主成分累计方差贡献率,[0.6496 0.9016 0.9744]
print("singular values of each selected components:", modelPCA.singular_values_.round(4)) # 各主成分的奇异值
# 显示主成分变换图像
fig2 = plt.figure(figsize=(9, 6)) # 主元素图像
fig2.suptitle("Principal component images")
imgPCA = np.zeros((height, width, k)) # (564, 564, 6)
for i in range(k):
pca = Xpca[:, i].reshape(-1, img.shape[1]) # 主元素图像 (564, 564)
imgPCA[:,:,i] = cv2.normalize(pca, (height, width), 0, 255, cv2.NORM_MINMAX)
ax2 = fig2.add_subplot(2,3,i+1)
ax2.set_xticks([]), ax2.set_yticks([])
ax2.imshow(imgPCA[:,:,i], 'gray') # 绘制主成分图像
plt.tight_layout()
# 由主成分分析重建图像
Xrebuild = modelPCA.inverse_transform(Xpca) # 由降维特征数据恢复原始维数特征数据 (m,k)->(m,p)
print(Xmat.shape, Xpca.shape, Xrebuild.shape) # (318096, 6), (318096, 3), (318096, 6)
fig3 = plt.figure(figsize=(9, 6)) # 重建图像,6 个不同波段
fig3.suptitle("Rebuild images of multi bands by youcans")
for i in range(nBands):
rebuild = Xrebuild[:, i].reshape(-1, img.shape[1]) # 主元素图像 (564, 564)
imgRebuild = cv2.normalize(rebuild, (height, width), 0, 255, cv2.NORM_MINMAX)
ax3 = fig3.add_subplot(2,3,i+1)
ax3.set_xticks([]), ax3.set_yticks([])
ax3.imshow(imgRebuild, 'gray') # 绘制重建的光谱图像 (有信息损失)
plt.tight_layout()
plt.show()
运行结果:
number of samples: m=318096
number of features: p=6
number of PCA features: K=3
explained variance: [3.8978 1.512 0.4368]
explained variance ratio: [0.6496 0.252 0.0728]
cumulative explained variance ratio: [0.6496 0.9016 0.9744]
singular values of each selected components: [1113.4896 693.5156 372.764 ]
(318096, 6) (318096, 3) (318096, 6)
注意:
建立模型时,PCA(n_components=2) 中的 n_components 为正整数,表示设定保留的主成份维数为 2;PCA(n_components=0.95) 中的 n_components 为 (0,1) 的小数,表示保留的主成分的累计方差贡献率大于设定值 0.95。
【本节完】
版权声明:
本例程的图像来自 R.C.Gonzalez 《数字图像处理(第四版)》P622 例11.16。
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/125761698)
Copyright 2022 youcans, XUPT
Crated:2022-7-12
234. 特征提取之主成分分析(PCA)
235. 特征提取之主成分分析(sklearn)
236. 特征提取之主成分分析(OpenCV)