时序分析基础,底层原则:
时序要满足latch的setup&hold时间。在要求的稳定窗口内数据不能变化。
基本时序模型
Stack(setup)= T-Tsu-Tco-Tdata 相邻2个时钟
Stack(hold )= Tco + Tdata - Thd 同1个时钟
如果 Tco 和 Tdata 延迟变大,保持时间 Stack (hold) 裕度越大
当出现hold违例,可以增加Tdata走线长度来消除。
如果 Tco 和 Tdata 延迟变大,建立时间 Stack (setup) 裕度越小
图
input delay 描述数据port在latch时钟沿来看,数据延后了多久才稳定。
max_delay(分析setup)
min_delay(分析hold )
系统同步分为3种:(SDR上升沿、SDR下降沿、DDR)x(边沿对齐)
源同步分为6种 :(SDR上升沿、SDR下降沿、DDR)x(中心对齐、边沿对齐)
外部器件可能会提供 Tco\setup\hold\shew
需要注意的隐含点:
在进行intput delay计算的时候需要考虑时钟路径的延时和数据路径的延时,
而FPGA来看,只需要知道数据相对于时钟的延时,那么可以将时钟延时看做0,
并且将时钟路径延时补偿到数据路径延时中得到Tdly,Tdly=数据路径-时钟路径。这样能够减少分析的变量。
系统同步的数据都是出现在launch沿之后,latch是下一个沿



已知:
时钟名 : clk_in
数据port : din
T =10ns
Tco =1~2ns
Tdly=0.3~0.4ns
得到:
set_input_delay -clock clk_in -max 2.4 [get_ports din]
set_input_delay -clock clk_in -min 1.3 [get_ports din]
需要注意是 -max 2.4 而不是 -max_delay 2.4



已知:
时钟名 : clk_in
数据port : din
T =10ns
Tco =1.5~2ns
Tdly=0.3~0.4ns
得到:
set_input_delay -clock clk_in -max 2.4 [get_ports din] -clock_fall
set_input_delay -clock clk_in -min 1.8 [get_ports din] -clock_fall



已知:
时钟名 : clk_in
数据port : din
T =10ns
Tco =1.0~2ns 上升沿
Tco =1.5~2ns 下降沿
Tdly=0.3~0.4ns
得到:
set_input_delay -clock clk_in -max 2.4 [get_ports din]
set_input_delay -clock clk_in -min 1.3 [get_ports din]
set_input_delay -clock clk_in -max 2.4 [get_ports din] -clock_fall -add_delay
set_input_delay -clock clk_in -min 1.8 [get_ports din] -clock_fall -add_delay
//有个知识点:下降沿发起的数据是在下个上升沿采样。所以data path是从5开始。


set_input_delay -clock [get_clocks clk_in] -min -add_delay 1.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -max -add_delay 9.0 [get_ports din]

set_input_delay -clock [get_clocks clk_in] -clock_fall -min -add_delay 1.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -clock_fall -max -add_delay 9.0 [get_ports din]

set_input_delay -clock [get_clocks clk_in] -clock_fall -min -add_delay 1.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -clock_fall -max -add_delay 4.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -min -add_delay 1.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -max -add_delay 4.0 [get_ports din]

set_input_delay -clock [get_clocks clk_in] -min -add_delay -1.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -max -add_delay 1.0 [get_ports din]

set_input_delay -clock [get_clocks clk_in] -clock_fall -min -add_delay -1.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -clock_fall -max -add_delay 1.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -min -add_delay -1.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -max -add_delay 1.0 [get_ports din]

set_input_delay -clock [get_clocks clk_in] -min -add_delay 9.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -max -add_delay 11.0 [get_ports din]

set_input_delay -clock [get_clocks clk_in] -clock_fall -min -add_delay 4.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -clock_fall -max -add_delay 6.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -min -add_delay 4.0 [get_ports din]
set_input_delay -clock [get_clocks clk_in] -max -add_delay 6.0 [get_ports din]
未添加约束,slack =无穷,也就是无法分析。


vivado分析最差路径(上升沿和下降沿的hold都能满足)也就是下降沿发送数据,上升沿采样。
data path的起点launch沿是5.0ns表示分析的是下降沿发起的数据。进过3.091ns到达reg.D
从destination clock path 窗口看到,latch沿是10.0ns,正好符合下降沿发送数据,上升沿采样。
时钟从clk_in port 经过bufg等延时,再减去setup就能得到required time。可以看到setup很小只有0.007ns。



https://my.oschina.net/msxbo/blog/3122304