给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m - 1] 。请问 k[0]k[1]…*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
代码思路
class Solution:
def cuttingRope(self, n: int) -> int:
dp=[1]*(n+1)
for i in range(2,n+1):
dp[i]=max([max(dp[i-j]*j,j*(i-j))for j in range(1,i)])
return dp[n]%1000000007
class Solution:
def cuttingRope(self, n: int) -> int:
if n <= 3: return n - 1
a, b, p = n // 3, n % 3, 1000000007
if b == 0: return 3 ** a % p
if b == 1: return 3 ** (a - 1) * 4 % p
return 3 ** a * 2 % p
快速幂
class Solution:
def cuttingRope(self, n: int) -> int:
def remainder(x, a, p):
rem = 1
while a > 0:
if a % 2: rem = (rem * x) % p
x = x ** 2 % p
a //= 2
return rem
if n <= 3: return n - 1
a, b, p = n // 3, n % 3, 1000000007
if b == 0: return remainder(3,a,p)
if b == 1: return remainder(3,a-1,p) * 4 % p
return remainder(3,a,p) * 2 % p
编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为 汉明重量).)。
提示:
请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
在 Java 中,编译器使用 二进制补码 记法来表示有符号整数。因此,在上面的 示例 3 中,输入表示有符号整数 -3。
示例 1:
输入:n = 11 (控制台输入 00000000000000000000000000001011)
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 ‘1’。
示例 2:
输入:n = 128 (控制台输入 00000000000000000000000010000000)
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 ‘1’。
示例 3:
输入:n = 4294967293 (控制台输入 11111111111111111111111111111101,部分语言中 n = -3)
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 ‘1’。
代码思路
class Solution:
def hammingWeight(self, n: int) -> int:
num=0
while n:
if n&1:num+=1
n>>=1
return num
class Solution:
def hammingWeight(self, n: int) -> int:
num=0
for i in range(32):
if n & (1 << i):num+=1
return num
class Solution:
def hammingWeight(self, n: int) -> int:
num=0
while n:
n &= n - 1
num += 1
return num