static:
变量:
生命开始:类加载的时候被初始化,只执行一次
存放地:方法区内存
变量:类名.静态变量名
对象.静态变量名(不推荐的方式)
可多次更改:
代码块:
生命开始:类加载的时候被执行,只执行一次
存放地:方法区内存
注意:静态代码块中只能使用静态变量,并且是需要在代码块之前定义好的。
也可以在静态代码块中对静态变量进行修改
方法:
存放地:方法区内存
注意:静态方法中不能使用this,因为不是实例方法,不能使用实例中的元素
不能使用实例变量,和实例方法
final:
1.final修饰的类无法继承
2.final修饰的方法无法覆盖
3.final修饰的变量只能赋一次值
4.final修饰的引用一旦指向某个对象,则不能重新指向其他对象,但该引用指向的对象内部数据是可以进行修改的
5.final修饰的实例变量必须手动初始化,不能采用系统默认值 (可以在静态代码块里进行赋值,只能赋值一次)
6.final修饰的实例变量一般和static联合使用,成为常量,名字通常大写
单例模式:
1.饿汉式(静态常量)【可用】
优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
缺点:在类装载的时候就完成实例化,没有达到Lazy Loading的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费。
2.饿汉式(静态代码块)【可用】
这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。
3.懒汉式(线程不安全)【不可用】
这种写法起到了Lazy Loading的效果,但是只能在单线程下使用。如果在多线程下,一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式。
4.懒汉式(线程安全,同步方法)【不推荐用】
解决上面第三种实现方式的线程不安全问题,做个线程同步就可以了,于是就对getInstance()方法进行了线程同步。
缺点:效率太低了,每个线程在想获得类的实例时候,执行getInstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return就行了。方法进行同步效率太低要改进。
5.懒汉式(线程安全,同步代码块)【不可用】
由于第四种实现方式同步效率太低,所以摒弃同步方法,改为同步产生实例化的的代码块。但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一致,假如一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。
6.双重检查【推荐使用】
Double-Check概念对于多线程开发者来说不会陌生,如代码中所示,我们进行了两次if (singleton == null)检查,这样就可以保证线程安全了。这样,实例化代码只用执行一次,后面再次访问时,判断if (singleton == null),直接return实例化对象。
优点:线程安全;延迟加载;效率较高。
7.静态内部类【推荐使用】
这种方式跟饿汉式方式采用的机制类似,但又有不同。两者都是采用了类装载的机制来保证初始化实例时只有一个线程。不同的地方在饿汉式方式是只要Singleton类被装载就会实例化,没有Lazy-Loading的作用,而静态内部类方式在Singleton类被装载时并不会立即实例化,而是在需要实例化时,调用getInstance方法,才会装载SingletonInstance类,从而完成Singleton的实例化。
类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
优点:避免了线程不安全,延迟加载,效率高。
8.枚举【推荐使用】
借助JDK1.5中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象。