Netty中使用的主从Reactor IO线程模型。
通过上篇文章的介绍,我们已经清楚了在IO调用的过程中内核帮我们搞了哪些事情,那么俗话说的好 内核领进门,修行在netty
,netty在用户空间又帮我们搞了哪些事情?
那么从本文开始,笔者将从源码角度来带大家看下上图中的 Reactor IO线程模型
在Netty中是如何实现的。
本文作为Reactor在Netty中实现系列文章中的开篇文章,笔者先来为大家介绍Reactor的骨架是如何创建出来的。
经典 主从Reactor多线程模型
有所差异。
Netty中的 Reactor
是以 Group
的形式出现的, 主从Reactor
在Netty中就是 主从Reactor组
,每个 Reactor Group
中会有多个 Reactor
用来执行具体的 IO任务
。当然在netty中 Reactor
不只用来执行 IO任务
,这个我们后面再说。
Main Reactor Group
中的 Reactor
数量取决于服务端要监听的端口个数,通常我们的服务端程序只会监听一个端口,所以 Main Reactor Group
只会有一个 Main Reactor
线程来处理最重要的事情: 绑定端口地址
, 接收客户端连接
, 为客户端创建对应的SocketChannel
, 将客户端SocketChannel分配给一个固定的Sub Reactor
。也就是上篇文章笔者为大家举的例子,饭店最重要的工作就是先把客人迎接进来。 “我家大门常打开,开放怀抱等你,拥抱过就有了默契你会爱上这里......”
Sub Reactor Group
里有多个 Reactor
线程, Reactor
线程的个数可以通过系统参数 -D io.netty.eventLoopThreads
指定。默认的 Reactor
的个数为 CPU核数 * 2
。 Sub Reactor
线程主要用来 轮询客户端SocketChannel上的IO就绪事件
, 处理IO就绪事件
, 执行异步任务
。 Sub Reactor Group
做的事情就是上篇饭店例子中服务员的工作,客人进来了要为客人分配座位,端茶送水,做菜上菜。 “不管远近都是客人,请不用客气,相约好了在一起,我们欢迎您......”一个 客户端SocketChannel
只能分配给一个固定的 Sub Reactor
。一个 Sub Reactor
负责处理多个 客户端SocketChannel
,这样可以将服务端承载的 全量客户端连接
分摊到多个 Sub Reactor
中处理,同时也能保证 客户端SocketChannel上的IO处理的线程安全性
。
由于文章篇幅的关系,作为Reactor在netty中实现的第一篇我们主要来介绍 主从Reactor Group
的创建流程,骨架脉络先搭好。
下面我们来看一段Netty服务端代码的编写模板,从代码模板的流程中我们来解析下主从Reactor的创建流程以及在这个过程中所涉及到的Netty核心类。
/** * Echoes back any received data from a client. */ public final class EchoServer { static final int PORT = Integer.parseInt(System.getProperty("port", "8007")); public static void main(String[] args) throws Exception { // Configure the server. //创建主从Reactor线程组 EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(); final EchoServerHandler serverHandler = new EchoServerHandler(); try { ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup)//配置主从Reactor .channel(NioServerSocketChannel.class)//配置主Reactor中的channel类型 .option(ChannelOption.SO_BACKLOG, 100)//设置主Reactor中channel的option选项 .handler(new LoggingHandler(LogLevel.INFO))//设置主Reactor中Channel->pipline->handler .childHandler(new ChannelInitializer<SocketChannel>() {//设置从Reactor中注册channel的pipeline @Override public void initChannel(SocketChannel ch) throws Exception { ChannelPipeline p = ch.pipeline(); //p.addLast(new LoggingHandler(LogLevel.INFO)); p.addLast(serverHandler); } }); // Start the server. 绑定端口启动服务,开始监听accept事件 ChannelFuture f = b.bind(PORT).sync(); // Wait until the server socket is closed. f.channel().closeFuture().sync(); } finally { // Shut down all event loops to terminate all threads. bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } } }
创建主从Reactor Group
,在Netty中 EventLoopGroup
就是 Reactor Group
的实现类。对应的 EventLoop
就是 Reactor
的实现类。//创建主从Reactor线程组 EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup();
IO处理
的 ChannelHandler
,实现相应 IO事件
的回调函数,编写对应的 IO处理
逻辑。注意这里只是简单示例哈,详细的IO事件处理,笔者会单独开一篇文章专门讲述。final EchoServerHandler serverHandler = new EchoServerHandler(); /** * Handler implementation for the echo server. */ @Sharable public class EchoServerHandler extends ChannelInboundHandlerAdapter { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) { ................省略IO处理逻辑................ ctx.write(msg); } @Override public void channelReadComplete(ChannelHandlerContext ctx) { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { // Close the connection when an exception is raised. cause.printStackTrace(); ctx.close(); } }
创建 ServerBootstrap
Netty服务端启动类,并在启动类中配置启动Netty服务端所需要的一些必备信息。
通过 serverBootstrap.group(bossGroup, workerGroup)
为Netty服务端配置 主从Reactor Group
实例。
通过 serverBootstrap.channel(NioServerSocketChannel.class)
配置Netty服务端的 ServerSocketChannel
用于 绑定端口地址
以及 创建客户端SocketChannel
。Netty中的 NioServerSocketChannel.class
就是对JDK NIO中 ServerSocketChannel
的封装。而用于表示 客户端连接
的 NioSocketChannel
是对JDK NIO SocketChannel
封装。
在上篇文章介绍 Socket内核结构
小节中我们提到,在编写服务端网络程序时,我们首先要创建一个 Socket
用于 listen和bind
端口地址,我们把这个叫做 监听Socket
,这里对应的就是 NioServerSocketChannel.class
。当客户端连接完成三次握手,系统调用 accept
函数会基于 监听Socket
创建出来一个 新的Socket
专门用于与客户端之间的网络通信我们称为 客户端连接Socket
,这里对应的就是 NioSocketChannel.class
serverBootstrap.option(ChannelOption.SO_BACKLOG, 100)
设置服务端 ServerSocketChannel
中的 SocketOption
。关于 SocketOption
的选项我们后边的文章再聊,本文主要聚焦在Netty Main Reactor Group
的创建及工作流程。
serverBootstrap.handler(....)
设置服务端 NioServerSocketChannel
中对应 Pipieline
中的 ChannelHandler
。
netty有两种 Channel类型
:一种是服务端用于监听绑定端口地址的 NioServerSocketChannel
,一种是用于客户端通信的 NioSocketChannel
。每种 Channel类型实例
都会对应一个 PipeLine
用于编排 对应channel实例
上的IO事件处理逻辑。 PipeLine
中组织的就是 ChannelHandler
用于编写特定的IO处理逻辑。
注意 serverBootstrap.handler
设置的是服务端 NioServerSocketChannel PipeLine
中的 ChannelHandler
。
serverBootstrap.childHandler(ChannelHandler childHandler)
用于设置客户端 NioSocketChannel
中对应 Pipieline
中的 ChannelHandler
。我们通常配置的编码解码器就是在这里。ServerBootstrap
启动类方法带有 child
前缀的均是设置客户端 NioSocketChannel
属性的。
ChannelInitializer
是用于当 SocketChannel
成功注册到绑定的 Reactor
上后,用于初始化该 SocketChannel
的 Pipeline
。它的 initChannel
方法会在注册成功后执行。这里只是捎带提一下,让大家有个初步印象,后面我会专门介绍。
ChannelFuture f = serverBootstrap.bind(PORT).sync()
这一步会是下篇文章要重点分析的主题 Main Reactor Group
的启动,绑定端口地址,开始监听客户端连接事件( OP_ACCEPT
)。本文我们只关注创建流程。
f.channel().closeFuture().sync()
等待服务端 NioServerSocketChannel
关闭。Netty服务端到这里正式启动,并准备好接受客户端连接的准备。
shutdownGracefully
优雅关闭 主从Reactor线程组
里的所有 Reactor线程
。
在上篇文章中我们介绍了五种 IO模型
,Netty中支持 BIO
, NIO
, AIO
以及多种操作系统下的 IO多路复用技术
实现。
在Netty中切换这几种 IO模型
也是非常的方便,下面我们来看下Netty如何对这几种IO模型进行支持的。
首先我们介绍下几个与 IO模型
相关的重要接口:
EventLoop
就是Netty中的 Reactor
,可以说它就是Netty的引擎,负责Channel上 IO就绪事件的监听
, IO就绪事件的处理
, 异步任务的执行
驱动着整个Netty的运转。
不同 IO模型
下, EventLoop
有着不同的实现,我们只需要切换不同的实现类就可以完成对Netty IO模型
的切换。
BIO | NIO | AIO |
---|---|---|
ThreadPerChannelEventLoop | NioEventLoop | AioEventLoop |
在 NIO模型
下Netty会 自动
根据操作系统以及版本的不同选择对应的 IO多路复用技术实现
。比如Linux 2.6版本以上用的是 Epoll
,2.6版本以下用的是 Poll
,Mac下采用的是 Kqueue
。
其中Linux kernel 在5.1版本引入的异步IO库io_uring正在netty中孵化。
Netty中的 Reactor
是以 Group
的形式出现的, EventLoopGroup
正是 Reactor组
的接口定义,负责管理 Reactor
,Netty中的 Channel
就是通过 EventLoopGroup
注册到具体的 Reactor
上的。
Netty的IO线程模型是 主从Reactor多线程模型
, 主从Reactor线程组
在Netty源码中对应的其实就是两个 EventLoopGroup
实例。
不同的 IO模型
也有对应的实现:
BIO | NIO | AIO |
---|---|---|
ThreadPerChannelEventLoopGroup | NioEventLoopGroup | AioEventLoopGroup |
用于Netty服务端使用的 ServerSocketChannel
,对应于上篇文章提到的 监听Socket
,负责绑定监听端口地址,接收客户端连接并创建用于与客户端通信的 SocketChannel
。
不同的 IO模型
下的实现:
BIO | NIO | AIO |
---|---|---|
OioServerSocketChannel | NioServerSocketChannel | AioServerSocketChannel |
用于与客户端通信的 SocketChannel
,对应于上篇文章提到的 客户端连接Socket
,当客户端完成三次握手后,由系统调用 accept
函数根据 监听Socket
创建。
不同的 IO模型
下的实现:
BIO | NIO | AIO |
---|---|---|
OioSocketChannel | NioSocketChannel | AioSocketChannel |
我们看到在 不同IO模型
的实现中,Netty这些围绕 IO模型
的核心类只是前缀的不同:
Oio
表示 old io
,现在已经废弃不推荐使用。Nio
,正是Netty推荐也是我们常用的 非阻塞IO模型
。Aio
,由于Linux下的 异步IO
机制实现的并不成熟,性能提升表现上也不明显,现已被删除。我们只需要将 IO模型
的这些核心接口对应的实现类 前缀
改为对应 IO模型
的前缀,就可以轻松在Netty中完成对 IO模型
的切换。
Common | Linux | Mac |
---|---|---|
NioEventLoopGroup | EpollEventLoopGroup | KQueueEventLoopGroup |
NioEventLoop | EpollEventLoop | KQueueEventLoop |
NioServerSocketChannel | EpollServerSocketChannel | KQueueServerSocketChannel |
NioSocketChannel | EpollSocketChannel | KQueueSocketChannel |
我们通常在使用 NIO模型
的时候会使用 Common列
下的这些 IO模型
核心类, Common类
也会根据操作系统的不同自动选择 JDK
在对应平台下的 IO多路复用技术
的实现。
而Netty自身也根据操作系统的不同提供了自己对 IO多路复用技术
的实现,比 JDK
的实现性能更优。比如:
JDK
的 NIO 默认
实现是 水平触发
,Netty 是 边缘触发(默认)
和水平触发可切换。。我们编写Netty服务端程序的时候也可以根据操作系统的不同,采用Netty自身的实现来进一步优化程序。做法也很简单,直接将上图中红框里的实现类替换成Netty的自身实现类即可完成切换。
经过以上对Netty服务端代码编写模板以及 IO模型
相关核心类的简单介绍,我们对Netty的创建流程有了一个简单粗略的总体认识,下面我们来深入剖析下创建流程过程中的每一个步骤以及这个过程中涉及到的核心类实现。
以下源码解析部分我们均采用 Common列
下 NIO
相关的实现进行解析。
在Netty服务端程序编写模板的开始,我们首先会创建两个Reactor线程组:
一个是主Reactor线程组 bossGroup
用于监听客户端连接,创建客户端连接 NioSocketChannel
,并将创建好的客户端连接 NioSocketChannel
注册到从Reactor线程组中一个固定的 Reactor
上。
一个是从Reactor线程组 workerGroup
, workerGroup
中的 Reactor
负责监听绑定在其上的客户端连接 NioSocketChannel
上的 IO就绪事件
,并处理 IO就绪事件
, 执行异步任务
。
//创建主从Reactor线程组 EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup();
Netty中Reactor线程组的实现类为 NioEventLoopGroup
,在创建 bossGroup
和 workerGroup
的时候用到了 NioEventLoopGroup
的两个构造函数:
nThreads
参数的构造函数 public NioEventLoopGroup(int nThreads)
。nThreads
参数的 默认
构造函数 public NioEventLoopGroup()
public class NioEventLoopGroup extends MultithreadEventLoopGroup { /** * Create a new instance using the default number of threads, the default {@link ThreadFactory} and * the {@link SelectorProvider} which is returned by {@link SelectorProvider#provider()}. */ public NioEventLoopGroup() { this(0); } /** * Create a new instance using the specified number of threads, {@link ThreadFactory} and the * {@link SelectorProvider} which is returned by {@link SelectorProvider#provider()}. */ public NioEventLoopGroup(int nThreads) { this(nThreads, (Executor) null); } ......................省略........................... }
nThreads
参数表示当前要创建的 Reactor线程组
内包含多少个 Reactor线程
。不指定 nThreads
参数的话采用默认的 Reactor线程
个数,用 0
表示。
最终会调用到构造函数
public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider, final SelectStrategyFactory selectStrategyFactory) { super(nThreads, executor, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject()); }
下面简单介绍下构造函数中这几个参数的作用,后面我们在讲解本文主线的过程中还会提及这几个参数,到时在详细介绍,这里只是让大家有个初步印象,不必做过多的纠缠。
Executor executor:
负责启动 Reactor线程
进而Reactor才可以开始工作。Reactor线程组 NioEventLoopGroup
负责创建 Reactor线程
,在创建的时候会将 executor
传入。
RejectedExecutionHandler:
当向 Reactor
添加异步任务添加失败时,采用的拒绝策略。Reactor的任务不只是监听IO活跃事件和IO任务的处理,还包括对异步任务的处理。这里大家只需有个这样的概念,后面笔者会专门详细介绍。
SelectorProvider selectorProvider:
Reactor中的IO模型为 IO多路复用模型
,对应于JDK NIO中的实现为 java.nio.channels.Selector
(就是我们上篇文章中提到的 select,poll,epoll
),每个Reator中都包含一个 Selector
,用于 轮询
注册在该Reactor上的所有 Channel
上的 IO事件
。 SelectorProvider
就是用来创建 Selector
的。
SelectStrategyFactory selectStrategyFactory:
Reactor最重要的事情就是 轮询
注册其上的 Channel
上的 IO就绪事件
,这里的 SelectStrategyFactory
用于指定 轮询策略
,默认为 DefaultSelectStrategyFactory.INSTANCE
。
最终会将这些参数交给 NioEventLoopGroup
的父类构造器,下面我们来看下 NioEventLoopGroup类
的继承结构:
NioEventLoopGroup类
的继承结构乍一看比较复杂,大家不要慌,笔者会随着主线的深入慢慢地介绍这些父类接口,我们现在重点关注 Mutithread
前缀的类。
我们知道 NioEventLoopGroup
是Netty中的 Reactor线程组
的实现,既然是线程组那么肯定是负责管理和创建 多个Reactor线程的
,所以 Mutithread
前缀的类定义的行为自然是对 Reactor线程组
内多个 Reactor线程
的创建和管理工作。
public abstract class MultithreadEventLoopGroup extends MultithreadEventExecutorGroup implements EventLoopGroup { private static final InternalLogger logger = InternalLoggerFactory.getInstance(MultithreadEventLoopGroup.class); //默认Reactor个数 private static final int DEFAULT_EVENT_LOOP_THREADS; static { DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt( "io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2)); if (logger.isDebugEnabled()) { logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS); } } /** * @see MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, Executor, Object...) */ protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) { super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args); } ...................省略..................... }
MultithreadEventLoopGroup类
主要的功能就是用来确定 Reactor线程组
内 Reactor
的个数。
默认的 Reactor
的个数存放于字段 DEFAULT_EVENT_LOOP_THREADS
中。
从 static {}
静态代码块中我们可以看出默认 Reactor
的个数的获取逻辑:
可以通过系统变量 -D io.netty.eventLoopThreads"
指定。
如果不指定,那么默认的就是 NettyRuntime.availableProcessors() * 2
当 nThread
参数设置为 0
采用默认设置时, Reactor线程组
内的 Reactor
个数则设置为 DEFAULT_EVENT_LOOP_THREADS
。
MultithreadEventExecutorGroup
这里就是本小节的核心,主要用来定义创建和管理 Reactor
的行为。
public abstract class MultithreadEventExecutorGroup extends AbstractEventExecutorGroup { //Reactor线程组中的Reactor集合 private final EventExecutor[] children; private final Set<EventExecutor> readonlyChildren; //从Reactor group中选择一个特定的Reactor的选择策略 用于channel注册绑定到一个固定的Reactor上 private final EventExecutorChooserFactory.EventExecutorChooser chooser; /** * Create a new instance. * * @param nThreads the number of threads that will be used by this instance. * @param executor the Executor to use, or {@code null} if the default should be used. * @param args arguments which will passed to each {@link #newChild(Executor, Object...)} call */ protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) { this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args); } ............................省略................................ }
首先介绍一个新的构造器参数 EventExecutorChooserFactory chooserFactory
。当客户端连接完成三次握手后, Main Reactor
会创建客户端连接 NioSocketChannel
,并将其绑定到 Sub Reactor Group
中的一个固定 Reactor
,那么具体要绑定到哪个具体的 Sub Reactor
上呢?这个绑定策略就是由 chooserFactory
来创建的。默认为 DefaultEventExecutorChooserFactory
。
下面就是本小节的主题 Reactor线程组
的创建过程:
protected MultithreadEventExecutorGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory, Object... args) { if (nThreads <= 0) { throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads)); } if (executor == null) { //用于创建Reactor线程 executor = new ThreadPerTaskExecutor(newDefaultThreadFactory()); } children = new EventExecutor[nThreads]; //循环创建reaactor group中的Reactor for (int i = 0; i < nThreads; i ++) { boolean success = false; try { //创建reactor children[i] = newChild(executor, args); success = true; } catch (Exception e) { throw new IllegalStateException("failed to create a child event loop", e); } finally { ................省略................ } } } //创建channel到Reactor的绑定策略 chooser = chooserFactory.newChooser(children); ................省略................ Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length); Collections.addAll(childrenSet, children); readonlyChildren = Collections.unmodifiableSet(childrenSet); }
在Netty Reactor Group中的单个 Reactor
的 IO线程模型
为上篇文章提到的 单Reactor单线程模型
,一个 Reactor线程
负责 轮询
注册其上的所有 Channel
中的 IO就绪事件
,处理IO事件,执行Netty中的异步任务等工作。正是这个 Reactor线程
驱动着整个Netty的运转,可谓是Netty的核心引擎。
而这里的 executor
就是负责启动 Reactor线程
的,从创建源码中我们可以看到 executor
的类型为 ThreadPerTaskExecutor
。
public final class ThreadPerTaskExecutor implements Executor { private final ThreadFactory threadFactory; public ThreadPerTaskExecutor(ThreadFactory threadFactory) { this.threadFactory = ObjectUtil.checkNotNull(threadFactory, "threadFactory"); } @Override public void execute(Runnable command) { threadFactory.newThread(command).start(); } }
我们看到 ThreadPerTaskExecutor
做的事情很简单,从它的命名前缀 ThreadPerTask
我们就可以猜出它的工作方式,就是来一个任务就创建一个线程执行。而创建的这个线程正是netty的核心引擎Reactor线程。
在 Reactor线程
启动的时候,Netty会将 Reactor线程
要做的事情封装成 Runnable
,丢给 exexutor
启动。
而 Reactor线程
的核心就是一个 死循环
不停的 轮询
IO就绪事件,处理IO事件,执行异步任务。一刻也不停歇,堪称 996典范
。
这里向大家先卖个关子, "Reactor线程是何时启动的呢??"
Reactor线程组NioEventLoopGroup
包含多个 Reactor
,存放于 private final EventExecutor[] children
数组中。
所以下面的事情就是创建 nThread
个 Reactor
,并存放于 EventExecutor[] children
字段中,
我们来看下用于创建 Reactor
的 newChild(executor, args)
方法:
newChild
方法是 MultithreadEventExecutorGroup
中的一个抽象方法,提供给具体子类实现。
protected abstract EventExecutor newChild(Executor executor, Object... args) throws Exception;
这里我们解析的是 NioEventLoopGroup
,我们来看下 newChild
在该类中的实现:
public class NioEventLoopGroup extends MultithreadEventLoopGroup { @Override protected EventLoop newChild(Executor executor, Object... args) throws Exception { EventLoopTaskQueueFactory queueFactory = args.length == 4 ? (EventLoopTaskQueueFactory) args[3] : null; return new NioEventLoop(this, executor, (SelectorProvider) args[0], ((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2], queueFactory); } }
前边提到的众多构造器参数,这里会通过可变参数 Object... args
传入到Reactor类 NioEventLoop
的构造器中。
这里介绍下新的参数 EventLoopTaskQueueFactory queueFactory
,前边提到Netty中的 Reactor
主要工作是 轮询
注册其上的所有 Channel
上的 IO就绪事件
,处理 IO就绪事件
。除了这些主要的工作外,Netty为了极致的压榨 Reactor
的性能,还会让它做一些异步任务的执行工作。既然要执行异步任务,那么 Reactor
中就需要一个 队列
来保存任务。
这里的 EventLoopTaskQueueFactory
就是用来创建这样的一个队列来保存 Reactor
中待执行的异步任务。
可以把 Reactor
理解成为一个 单线程的线程池
, 类似
于 JDK
中的 SingleThreadExecutor
,仅用一个线程来执行 轮询IO就绪事件
, 处理IO就绪事件
, 执行异步任务
。同时待执行的异步任务保存在 Reactor
里的 taskQueue
中。
public final class NioEventLoop extends SingleThreadEventLoop { //用于创建JDK NIO Selector,ServerSocketChannel private final SelectorProvider provider; //Selector轮询策略 决定什么时候轮询,什么时候处理IO事件,什么时候执行异步任务 private final SelectStrategy selectStrategy; /** * The NIO {@link Selector}. */ private Selector selector; private Selector unwrappedSelector; NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider, SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler, EventLoopTaskQueueFactory queueFactory) { super(parent, executor, false, newTaskQueue(queueFactory), newTaskQueue(queueFactory), rejectedExecutionHandler); this.provider = ObjectUtil.checkNotNull(selectorProvider, "selectorProvider"); this.selectStrategy = ObjectUtil.checkNotNull(strategy, "selectStrategy"); final SelectorTuple selectorTuple = openSelector(); this.selector = selectorTuple.selector; this.unwrappedSelector = selectorTuple.unwrappedSelector; } }
这里就正式开始了 Reactor
的创建过程,我们知道 Reactor
的核心是采用的 IO多路复用模型
来对客户端连接上的 IO事件
进行 监听
,所以最重要的事情是创建 Selector
( JDK NIO 中IO多路复用技术的实现
)。
可以把 Selector
理解为我们上篇文章介绍的 Select,poll,epoll
,它是 JDK NIO
对操作系统内核提供的这些 IO多路复用技术
的封装。
openSelector
是 NioEventLoop类
中用于创建 IO多路复用
的 Selector
,并对创建出来的 JDK NIO
原生的 Selector
进行性能优化。
首先会通过 SelectorProvider#openSelector
创建JDK NIO原生的 Selector
。
private SelectorTuple openSelector() { final Selector unwrappedSelector; try { //通过JDK NIO SelectorProvider创建Selector unwrappedSelector = provider.openSelector(); } catch (IOException e) { throw new ChannelException("failed to open a new selector", e); } ..................省略............. }
SelectorProvider
会根据操作系统的不同选择JDK在不同操作系统版本下的对应 Selector
的实现。Linux下会选择 Epoll
,Mac下会选择 Kqueue
。
下面我们就来看下 SelectorProvider
是如何做到自动适配不同操作系统下 IO多路复用
实现的
public NioEventLoopGroup(ThreadFactory threadFactory) { this(0, threadFactory, SelectorProvider.provider()); }
SelectorProvider
是在前面介绍的 NioEventLoopGroup类
构造函数中通过调用 SelectorProvider.provider()
被加载,并通过 NioEventLoopGroup#newChild
方法中的可变长参数 Object... args
传递到 NioEventLoop
中的 private final SelectorProvider provider
字段中。
SelectorProvider的加载过程:
public abstract class SelectorProvider { public static SelectorProvider provider() { synchronized (lock) { if (provider != null) return provider; return AccessController.doPrivileged( new PrivilegedAction<SelectorProvider>() { public SelectorProvider run() { if (loadProviderFromProperty()) return provider; if (loadProviderAsService()) return provider; provider = sun.nio.ch.DefaultSelectorProvider.create(); return provider; } }); } } }
从 SelectorProvider
加载源码中我们可以看出, SelectorProvider
的加载方式有三种,优先级如下:
-D java.nio.channels.spi.SelectorProvider
指定 SelectorProvider
的自定义实现类 全限定名
。通过 应用程序类加载器(Application Classloader)
加载。private static boolean loadProviderFromProperty() { String cn = System.getProperty("java.nio.channels.spi.SelectorProvider"); if (cn == null) return false; try { Class<?> c = Class.forName(cn, true, ClassLoader.getSystemClassLoader()); provider = (SelectorProvider)c.newInstance(); return true; } .................省略............. }
SPI
方式加载。在工程目录 META-INF/services
下定义名为 java.nio.channels.spi.SelectorProvider
的 SPI文件
,文件中第一个定义的 SelectorProvider
实现类全限定名就会被加载。private static boolean loadProviderAsService() { ServiceLoader<SelectorProvider> sl = ServiceLoader.load(SelectorProvider.class, ClassLoader.getSystemClassLoader()); Iterator<SelectorProvider> i = sl.iterator(); for (;;) { try { if (!i.hasNext()) return false; provider = i.next(); return true; } catch (ServiceConfigurationError sce) { if (sce.getCause() instanceof SecurityException) { // Ignore the security exception, try the next provider continue; } throw sce; } } }
SelectorProvider
系统默认实现 sun.nio.ch.DefaultSelectorProvider
。笔者当前使用的操作系统是 MacOS
,从源码中我们可以看到自动适配了 KQueue
实现。public class DefaultSelectorProvider { private DefaultSelectorProvider() { } public static SelectorProvider create() { return new KQueueSelectorProvider(); } }
不同操作系统中JDK对于 DefaultSelectorProvider
会有所不同,Linux内核版本2.6以上对应的 Epoll
,Linux内核版本2.6以下对应的 Poll
,MacOS对应的是 KQueue
。
下面我们接着回到 io.netty.channel.nio.NioEventLoop#openSelector
的主线上来。
首先在 NioEventLoop
中有一个Selector优化开关 DISABLE_KEY_SET_OPTIMIZATION
,通过系统变量 -D io.netty.noKeySetOptimization
指定,默认是开启的,表示需要对JDK NIO原生 Selector
进行优化。
public final class NioEventLoop extends SingleThreadEventLoop { //Selector优化开关 默认开启 为了遍历的效率 会对Selector中的SelectedKeys进行数据结构优化 private static final boolean DISABLE_KEY_SET_OPTIMIZATION = SystemPropertyUtil.getBoolean("io.netty.noKeySetOptimization", false); }
如果优化开关 DISABLE_KEY_SET_OPTIMIZATION
是关闭的,那么直接返回JDK NIO原生的 Selector
。
private SelectorTuple openSelector() { ..........SelectorProvider创建JDK NIO 原生Selector.............. if (DISABLE_KEY_SET_OPTIMIZATION) { //JDK NIO原生Selector ,Selector优化开关 默认开启需要对Selector进行优化 return new SelectorTuple(unwrappedSelector); } }
下面为Netty对JDK NIO原生的 Selector
的优化过程:
JDK NIO原生Selector
的抽象实现类 sun.nio.ch.SelectorImpl
。 JDK NIO原生Selector
的实现均继承于该抽象类。用于判断由 SelectorProvider
创建出来的 Selector
是否为 JDK默认实现
( SelectorProvider
第三种加载方式)。因为 SelectorProvider
可以是自定义加载,所以它创建出来的 Selector
并不一定是JDK NIO 原生的。Object maybeSelectorImplClass = AccessController.doPrivileged(new PrivilegedAction<Object>() { @Override public Object run() { try { return Class.forName( "sun.nio.ch.SelectorImpl", false, PlatformDependent.getSystemClassLoader()); } catch (Throwable cause) { return cause; } } });
JDK NIO Selector的抽象类 sun.nio.ch.SelectorImpl
public abstract class SelectorImpl extends AbstractSelector { // The set of keys with data ready for an operation // //IO就绪的SelectionKey(里面包裹着channel) protected Set<SelectionKey> selectedKeys; // The set of keys registered with this Selector //注册在该Selector上的所有SelectionKey(里面包裹着channel) protected HashSet<SelectionKey> keys; // Public views of the key sets //用于向调用线程返回的keys,不可变 private Set<SelectionKey> publicKeys; // Immutable //当有IO就绪的SelectionKey时,向调用线程返回。只可删除其中元素,不可增加 private Set<SelectionKey> publicSelectedKeys; // Removal allowed, but not addition protected SelectorImpl(SelectorProvider sp) { super(sp); keys = new HashSet<SelectionKey>(); selectedKeys = new HashSet<SelectionKey>(); if (Util.atBugLevel("1.4")) { publicKeys = keys; publicSelectedKeys = selectedKeys; } else { //不可变 publicKeys = Collections.unmodifiableSet(keys); //只可删除其中元素,不可增加 publicSelectedKeys = Util.ungrowableSet(selectedKeys); } } }
这里笔者来简单介绍下JDK NIO中的 Selector
中这几个字段的含义,我们可以和上篇文章讲到的epoll在内核中的结构做类比,方便大家后续的理解:
Set<SelectionKey> selectedKeys
类似于我们上篇文章讲解 Epoll
时提到的 就绪队列eventpoll->rdllist
, Selector
这里大家可以理解为 Epoll
。 Selector
会将自己监听到的 IO就绪
的 Channel
放到 selectedKeys
中。这里的 SelectionKey
暂且可以理解为 Channel
在 Selector
中的表示,类比上图中 epitem结构
里的 epoll_event
,封装IO就绪Socket的信息。
其实 SelectionKey
里包含的信息不止是 Channel
还有很多IO相关的信息。后面我们在详细介绍。
HashSet<SelectionKey> keys:
这里存放的是所有注册到该 Selector
上的 Channel
。类比 epoll中的红黑树结构rb_root
SelectionKey
在 Channel
注册到 Selector
中后生成。
Set<SelectionKey> publicSelectedKeys
相当于是 selectedKeys
的视图,用于向外部线程返回 IO就绪
的 SelectionKey
。这个集合在外部线程中只能做删除操作 不可增加元素
,并且 不是线程安全的
。
Set<SelectionKey> publicKeys
相当于 keys
的不可变视图,用于向外部线程返回所有注册在该 Selector
上的 SelectionKey
这里需要 重点关注
抽象类 sun.nio.ch.SelectorImpl
中的 selectedKeys
和 publicSelectedKeys
这两个字段,注意它们的类型都是 HashSet
,一会优化的就是这里!!!!
SelectorProvider
创建出来的 Selector
是否是JDK NIO原生的 Selector
实现。 因为Netty优化针对的是JDK NIO 原生 Selector
。判断标准为 sun.nio.ch.SelectorImpl
类是否为 SelectorProvider
创建出 Selector
的父类。如果不是则直接返回。不在继续下面的优化过程。//判断是否可以对Selector进行优化,这里主要针对JDK NIO原生Selector的实现类进行优化,因为SelectorProvider可以加载的是自定义Selector实现 //如果SelectorProvider创建的Selector不是JDK原生sun.nio.ch.SelectorImpl的实现类,那么无法进行优化,直接返回 if (!(maybeSelectorImplClass instanceof Class) || !((Class<?>) maybeSelectorImplClass).isAssignableFrom(unwrappedSelector.getClass())) { if (maybeSelectorImplClass instanceof Throwable) { Throwable t = (Throwable) maybeSelectorImplClass; logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, t); } return new SelectorTuple(unwrappedSelector); }
通过前面对 SelectorProvider
的介绍我们知道,这里通过 provider.openSelector()
创建出来的 Selector
实现类为 KQueueSelectorImpl类
,它继承实现了 sun.nio.ch.SelectorImpl
,所以它是JDK NIO 原生的 Selector
实现
class KQueueSelectorImpl extends SelectorImpl { }
SelectedSelectionKeySet
通过反射替换掉 sun.nio.ch.SelectorImpl类
中 selectedKeys
和 publicSelectedKeys
的默认 HashSet
实现。为什么要用 SelectedSelectionKeySet
替换掉原来的 HashSet
呢??
因为这里涉及到对 HashSet类型
的 sun.nio.ch.SelectorImpl#selectedKeys
集合的两种操作:
插入操作:通过前边对 sun.nio.ch.SelectorImpl类
中字段的介绍我们知道,在 Selector
监听到 IO就绪
的 SelectionKey
后,会将 IO就绪
的 SelectionKey
插入 sun.nio.ch.SelectorImpl#selectedKeys
集合中,这时 Reactor线程
会从 java.nio.channels.Selector#select(long)
阻塞调用中返回(类似上篇文章提到的 epoll_wait
)。
遍历操作: Reactor线程
返回后,会从 Selector
中获取 IO就绪
的 SelectionKey
集合(也就是 sun.nio.ch.SelectorImpl#selectedKeys
), Reactor线程
遍历 selectedKeys
,获取 IO就绪
的 SocketChannel
,并处理 SocketChannel
上的 IO事件
。
我们都知道 HashSet
底层数据结构是一个 哈希表
,由于 Hash冲突
这种情况的存在,所以导致对 哈希表
进行 插入
和 遍历
操作的性能不如对 数组
进行 插入
和 遍历
操作的性能好。
还有一个重要原因是,数组可以利用CPU缓存的优势来提高遍历的效率。后面笔者会有一篇专门的文章来讲述利用CPU缓存行如何为我们带来性能优势。
所以Netty为了优化对 sun.nio.ch.SelectorImpl#selectedKeys
集合的 插入,遍历
性能,自己用 数组
这种数据结构实现了 SelectedSelectionKeySet
,用它来替换原来的 HashSet
实现。
初始化 SelectionKey[] keys
数组大小为 1024
,当数组容量不够时,扩容为原来的两倍大小。
通过数组尾部指针 size
,在向数组插入元素的时候可以直接定位到插入位置 keys[size++]
。操作一步到位,不用像 哈希表
那样还需要解决 Hash冲突
。
对数组的遍历操作也是如丝般顺滑,CPU直接可以在缓存行中遍历读取数组元素无需访问内存。比 HashSet
的迭代器 java.util.HashMap.KeyIterator
遍历方式性能不知高到哪里去了。
final class SelectedSelectionKeySet extends AbstractSet<SelectionKey> { //采用数组替换到JDK中的HashSet,这样add操作和遍历操作效率更高,不需要考虑hash冲突 SelectionKey[] keys; //数组尾部指针 int size; SelectedSelectionKeySet() { keys = new SelectionKey[1024]; } /** * 数组的添加效率高于 HashSet 因为不需要考虑hash冲突 * */ @Override public boolean add(SelectionKey o) { if (o == null) { return false; } //时间复杂度O(1) keys[size++] = o; if (size == keys.length) { //扩容为原来的两倍大小 increaseCapacity(); } return true; } private void increaseCapacity() { SelectionKey[] newKeys = new SelectionKey[keys.length << 1]; System.arraycopy(keys, 0, newKeys, 0, size); keys = newKeys; } /** * 采用数组的遍历效率 高于 HashSet * */ @Override public Iterator<SelectionKey> iterator() { return new Iterator<SelectionKey>() { private int idx; @Override public boolean hasNext() { return idx < size; } @Override public SelectionKey next() { if (!hasNext()) { throw new NoSuchElementException(); } return keys[idx++]; } @Override public void remove() { throw new UnsupportedOperationException(); } }; } }
看到这里不禁感叹,从各种小的细节可以看出Netty对性能的优化简直淋漓尽致,对性能的追求令人发指。细节真的是魔鬼。
SelectedSelectionKeySet
替换掉 sun.nio.ch.SelectorImpl#selectedKeys
, sun.nio.ch.SelectorImpl#publicSelectedKeys
这两个集合中原来 HashSet
的实现。sun.nio.ch.SelectorImpl
类中 selectedKeys
和 publicSelectedKeys
。Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys"); Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");
Java9
版本以上通过 sun.misc.Unsafe
设置字段值的方式if (PlatformDependent.javaVersion() >= 9 && PlatformDependent.hasUnsafe()) { long selectedKeysFieldOffset = PlatformDependent.objectFieldOffset(selectedKeysField); long publicSelectedKeysFieldOffset = PlatformDependent.objectFieldOffset(publicSelectedKeysField); if (selectedKeysFieldOffset != -1 && publicSelectedKeysFieldOffset != -1) { PlatformDependent.putObject( unwrappedSelector, selectedKeysFieldOffset, selectedKeySet); PlatformDependent.putObject( unwrappedSelector, publicSelectedKeysFieldOffset, selectedKeySet); return null; } }
SelectedSelectionKeySet
替换掉 hashSet
实现的 sun.nio.ch.SelectorImpl#selectedKeys,sun.nio.ch.SelectorImpl#publicSelectedKeys
。Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField, true); if (cause != null) { return cause; } cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField, true); if (cause != null) { return cause; } //Java8反射替换字段 selectedKeysField.set(unwrappedSelector, selectedKeySet); publicSelectedKeysField.set(unwrappedSelector, selectedKeySet);
sun.nio.ch.SelectorImpl
类中 selectedKeys
和 publicSelectedKeys
关联好的Netty优化实现 SelectedSelectionKeySet
,设置到 io.netty.channel.nio.NioEventLoop#selectedKeys
字段中保存。//会通过反射替换selector对象中的selectedKeySet保存就绪的selectKey //该字段为持有selector对象selectedKeys的引用,当IO事件就绪时,直接从这里获取 private SelectedSelectionKeySet selectedKeys;
后续 Reactor线程
就会直接从 io.netty.channel.nio.NioEventLoop#selectedKeys
中获取 IO就绪
的 SocketChannel
SelectorTuple
封装 unwrappedSelector
和 wrappedSelector
返回给 NioEventLoop
构造函数。到此 Reactor
中的 Selector
就创建完毕了。return new SelectorTuple(unwrappedSelector, new SelectedSelectionKeySetSelector(unwrappedSelector, selectedKeySet));
private static final class SelectorTuple { final Selector unwrappedSelector; final Selector selector; SelectorTuple(Selector unwrappedSelector) { this.unwrappedSelector = unwrappedSelector; this.selector = unwrappedSelector; } SelectorTuple(Selector unwrappedSelector, Selector selector) { this.unwrappedSelector = unwrappedSelector; this.selector = selector; } }
所谓的 unwrappedSelector
是指被Netty优化过的JDK NIO原生Selector。
所谓的 wrappedSelector
就是用 SelectedSelectionKeySetSelector
装饰类将 unwrappedSelector
和与 sun.nio.ch.SelectorImpl类
关联好的Netty优化实现 SelectedSelectionKeySet
封装装饰起来。
wrappedSelector
会将所有对 Selector
的操作全部代理给 unwrappedSelector
,并在 发起轮询IO事件
的相关操作中,重置 SelectedSelectionKeySet
清空上一次的轮询结果。
final class SelectedSelectionKeySetSelector extends Selector { //Netty优化后的 SelectedKey就绪集合 private final SelectedSelectionKeySet selectionKeys; //优化后的JDK NIO 原生Selector private final Selector delegate; SelectedSelectionKeySetSelector(Selector delegate, SelectedSelectionKeySet selectionKeys) { this.delegate = delegate; this.selectionKeys = selectionKeys; } @Override public boolean isOpen() { return delegate.isOpen(); } @Override public SelectorProvider provider() { return delegate.provider(); } @Override public Set<SelectionKey> keys() { return delegate.keys(); } @Override public Set<SelectionKey> selectedKeys() { return delegate.selectedKeys(); } @Override public int selectNow() throws IOException { //重置SelectedKeys集合 selectionKeys.reset(); return delegate.selectNow(); } @Override public int select(long timeout) throws IOException { //重置SelectedKeys集合 selectionKeys.reset(); return delegate.select(timeout); } @Override public int select() throws IOException { //重置SelectedKeys集合 selectionKeys.reset(); return delegate.select(); } @Override public Selector wakeup() { return delegate.wakeup(); } @Override public void close() throws IOException { delegate.close(); } }
到这里Reactor的核心Selector就创建好了,下面我们来看下用于保存异步任务的队列是如何创建出来的。
NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider, SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler, EventLoopTaskQueueFactory queueFactory) { super(parent, executor, false, newTaskQueue(queueFactory), newTaskQueue(queueFactory), rejectedExecutionHandler); this.provider = ObjectUtil.checkNotNull(selectorProvider, "selectorProvider"); this.selectStrategy = ObjectUtil.checkNotNull(strategy, "selectStrategy"); final SelectorTuple selectorTuple = openSelector(); //通过用SelectedSelectionKeySet装饰后的unwrappedSelector this.selector = selectorTuple.selector; //Netty优化过的JDK NIO远程Selector this.unwrappedSelector = selectorTuple.unwrappedSelector; }
我们继续回到创建 Reactor
的主线上,到目前为止 Reactor
的核心 Selector
就创建好了,前边我们提到 Reactor
除了需要 监听IO就绪事件
以及处理 IO就绪事件
外,还需要执行一些异步任务,当外部线程向 Reactor
提交异步任务后, Reactor
就需要一个队列来保存这些异步任务,等待 Reactor线程
执行。
下面我们来看下 Reactor
中任务队列的创建过程:
//任务队列大小,默认是无界队列 protected static final int DEFAULT_MAX_PENDING_TASKS = Math.max(16, SystemPropertyUtil.getInt("io.netty.eventLoop.maxPendingTasks", Integer.MAX_VALUE)); private static Queue<Runnable> newTaskQueue( EventLoopTaskQueueFactory queueFactory) { if (queueFactory == null) { return newTaskQueue0(DEFAULT_MAX_PENDING_TASKS); } return queueFactory.newTaskQueue(DEFAULT_MAX_PENDING_TASKS); } private static Queue<Runnable> newTaskQueue0(int maxPendingTasks) { // This event loop never calls takeTask() return maxPendingTasks == Integer.MAX_VALUE ? PlatformDependent.<Runnable>newMpscQueue() : PlatformDependent.<Runnable>newMpscQueue(maxPendingTasks); }
在 NioEventLoop
的父类 SingleThreadEventLoop
中提供了一个静态变量 DEFAULT_MAX_PENDING_TASKS
用来指定 Reactor
任务队列的大小。可以通过系统变量 -D io.netty.eventLoop.maxPendingTasks
进行设置,默认为 Integer.MAX_VALUE
,表示任务队列默认为 无界队列
。
根据 DEFAULT_MAX_PENDING_TASKS
变量的设定,来决定创建无界任务队列还是有界任务队列。
//创建无界任务队列 PlatformDependent.<Runnable>newMpscQueue() //创建有界任务队列 PlatformDependent.<Runnable>newMpscQueue(maxPendingTasks) public static <T> Queue<T> newMpscQueue() { return Mpsc.newMpscQueue(); } public static <T> Queue<T> newMpscQueue(final int maxCapacity) { return Mpsc.newMpscQueue(maxCapacity); }
Reactor
内的异步任务队列的类型为 MpscQueue
,它是由 JCTools
提供的一个高性能无锁队列,从命名前缀 Mpsc
可以看出,它适用于 多生产者单消费者
的场景,它支持多个生产者线程安全的访问队列,同一时刻只允许一个消费者线程读取队列中的元素。
我们知道Netty中的 Reactor
可以 线程安全
的处理注册其上的多个 SocketChannel
上的 IO数据
,保证 Reactor线程安全
的核心原因正是因为这个 MpscQueue
,它可以支持多个业务线程在处理完业务逻辑后,线程安全的向 MpscQueue
添加 异步写任务
,然后由单个 Reactor线程
来执行这些 写任务
。既然是单线程执行,那肯定是线程安全的了。
NioEventLoop
的继承结构也是比较复杂,这里我们只关注在 Reactor
创建过程中涉及的到两个父类 SingleThreadEventLoop
, SingleThreadEventExecutor
。
剩下的继承体系,我们在后边随着 Netty
源码的深入在慢慢介绍。
前边我们提到,其实 Reactor
我们可以看作是一个单线程的线程池,只有一个线程用来执行 IO就绪事件的监听
, IO事件的处理
, 异步任务的执行
。用 MpscQueue
来存储待执行的异步任务。
命名前缀为 SingleThread
的父类都是对 Reactor
这些行为的分层定义。也是本小节要介绍的对象
Reactor
负责执行的异步任务分为三类:
普通任务:
这是Netty最主要执行的异步任务,存放在普通任务队列 taskQueue
中。在 NioEventLoop
构造函数中创建。定时任务:
存放在优先级队列中。后续我们介绍。尾部任务:
存放于尾部任务队列 tailTasks
中,尾部任务一般不常用,在普通任务执行完后 Reactor线程会执行尾部任务。 使用场景: 比如对Netty 的运行状态做一些统计数据,例如任务循环的耗时、占用物理内存的大小等等都可以向尾部队列添加一个收尾任务完成统计数据的实时更新。SingleThreadEventLoop
负责对 尾部任务队列tailTasks
进行管理。并且提供 Channel
向 Reactor
注册的行为。
public abstract class SingleThreadEventLoop extends SingleThreadEventExecutor implements EventLoop { //任务队列大小,默认是无界队列 protected static final int DEFAULT_MAX_PENDING_TASKS = Math.max(16, SystemPropertyUtil.getInt("io.netty.eventLoop.maxPendingTasks", Integer.MAX_VALUE)); //尾部任务队列 private final Queue<Runnable> tailTasks; protected SingleThreadEventLoop(EventLoopGroup parent, Executor executor, boolean addTaskWakesUp, Queue<Runnable> taskQueue, Queue<Runnable> tailTaskQueue, RejectedExecutionHandler rejectedExecutionHandler) { super(parent, executor, addTaskWakesUp, taskQueue, rejectedExecutionHandler); //尾部队列 执行一些统计任务 不常用 tailTasks = ObjectUtil.checkNotNull(tailTaskQueue, "tailTaskQueue"); } @Override public ChannelFuture register(Channel channel) { //注册channel到绑定的Reactor上 return register(new DefaultChannelPromise(channel, this)); } }
SingleThreadEventExecutor
主要负责对 普通任务队列
的管理,以及 异步任务的执行
, Reactor线程的启停
。
public abstract class SingleThreadEventExecutor extends AbstractScheduledEventExecutor implements OrderedEventExecutor { protected SingleThreadEventExecutor(EventExecutorGroup parent, Executor executor, boolean addTaskWakesUp, Queue<Runnable> taskQueue, RejectedExecutionHandler rejectedHandler) { //parent为Reactor所属的NioEventLoopGroup Reactor线程组 super(parent); //向Reactor添加任务时,是否唤醒Selector停止轮询IO就绪事件,马上执行异步任务 this.addTaskWakesUp = addTaskWakesUp; //Reactor异步任务队列的大小 this.maxPendingTasks = DEFAULT_MAX_PENDING_EXECUTOR_TASKS; //用于启动Reactor线程的executor -> ThreadPerTaskExecutor this.executor = ThreadExecutorMap.apply(executor, this); //普通任务队列 this.taskQueue = ObjectUtil.checkNotNull(taskQueue, "taskQueue"); //任务队列满时的拒绝策略 this.rejectedExecutionHandler = ObjectUtil.checkNotNull(rejectedHandler, "rejectedHandler"); } }
到现在为止,一个完整的 Reactor架构
就被创建出来了。
到这一步,Reactor线程组 NioEventLoopGroup
里边的所有 Reactor
就已经全部创建完毕。
无论是Netty服务端 NioServerSocketChannel
关注的 OP_ACCEPT
事件也好,还是Netty客户端 NioSocketChannel
关注的 OP_READ
和 OP_WRITE
事件也好,都需要先注册到 Reactor
上, Reactor
才能监听 Channel
上关注的 IO事件
实现 IO多路复用
。
NioEventLoopGroup
(Reactor线程组)里边有众多的 Reactor
,那么以上提到的这些 Channel
究竟应该注册到哪个 Reactor
上呢?这就需要一个绑定的策略来平均分配。
还记得我们前边介绍 MultithreadEventExecutorGroup类
的时候提到的构造器参数 EventExecutorChooserFactory
吗?
这时候它就派上用场了,它主要用来创建 Channel
到 Reactor
的绑定策略。默认为 DefaultEventExecutorChooserFactory.INSTANCE
。
public abstract class MultithreadEventExecutorGroup extends AbstractEventExecutorGroup { //从Reactor集合中选择一个特定的Reactor的绑定策略 用于channel注册绑定到一个固定的Reactor上 private final EventExecutorChooserFactory.EventExecutorChooser chooser; chooser = chooserFactory.newChooser(children); }
下面我们来看下具体的绑定策略:
public final class DefaultEventExecutorChooserFactory implements EventExecutorChooserFactory { public static final DefaultEventExecutorChooserFactory INSTANCE = new DefaultEventExecutorChooserFactory(); private DefaultEventExecutorChooserFactory() { } @Override public EventExecutorChooser newChooser(EventExecutor[] executors) { if (isPowerOfTwo(executors.length)) { return new PowerOfTwoEventExecutorChooser(executors); } else { return new GenericEventExecutorChooser(executors); } } private static boolean isPowerOfTwo(int val) { return (val & -val) == val; } ...................省略................. }
我们看到在 newChooser
方法绑定策略有两个分支,不同之处在于需要判断Reactor线程组中的 Reactor
个数是否为 2的次幂
。
Netty中的绑定策略就是采用 round-robin
轮询的方式来挨个选择 Reactor
进行绑定。
采用 round-robin
的方式进行负载均衡,我们一般会用 round % reactor.length
取余的方式来挨个平均的定位到对应的 Reactor
上。
如果 Reactor
的个数 reactor.length
恰好是 2的次幂
,那么就可以用位操作 &
运算 round & reactor.length -1
来代替 %
运算 round % reactor.length
,因为位运算的性能更高。具体为什么 &
运算能够代替 %
运算,笔者会在后面讲述时间轮的时候为大家详细证明,这里大家只需记住这个公式,我们还是聚焦本文的主线。
了解了优化原理,我们在看代码实现就很容易理解了。
利用 %
运算的方式 Math.abs(idx.getAndIncrement() % executors.length)
来进行绑定。
private static final class GenericEventExecutorChooser implements EventExecutorChooser { private final AtomicLong idx = new AtomicLong(); private final EventExecutor[] executors; GenericEventExecutorChooser(EventExecutor[] executors) { this.executors = executors; } @Override public EventExecutor next() { return executors[(int) Math.abs(idx.getAndIncrement() % executors.length)]; } }
利用 &
运算的方式 idx.getAndIncrement() & executors.length - 1
来进行绑定。
private static final class PowerOfTwoEventExecutorChooser implements EventExecutorChooser { private final AtomicInteger idx = new AtomicInteger(); private final EventExecutor[] executors; PowerOfTwoEventExecutorChooser(EventExecutor[] executors) { this.executors = executors; } @Override public EventExecutor next() { return executors[idx.getAndIncrement() & executors.length - 1]; } }
又一次被Netty对性能的极致追求所折服~~~~
当Reactor线程组 NioEventLoopGroup
中所有的 Reactor
已经创建完毕, Channel
到 Reactor
的绑定策略也创建完毕后,我们就来到了创建 NioEventGroup
的最后一步。
俗话说的好,有创建就有启动,有启动就有关闭,这里会创建 Reactor关闭
的回调函数 terminationListener
,在 Reactor
关闭时回调。
terminationListener
回调的逻辑很简单:
通过 AtomicInteger terminatedChildren
变量记录已经关闭的 Reactor
个数,用来判断 NioEventLoopGroup
中的 Reactor
是否已经全部关闭。
如果所有 Reactor
均已关闭,设置 NioEventLoopGroup
中的 terminationFuture
为 success
。表示 Reactor线程组
关闭成功。
//记录关闭的Reactor个数,当Reactor全部关闭后,才可以认为关闭成功 private final AtomicInteger terminatedChildren = new AtomicInteger(); //关闭future private final Promise<?> terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE); final FutureListener<Object> terminationListener = new FutureListener<Object>() { @Override public void operationComplete(Future<Object> future) throws Exception { if (terminatedChildren.incrementAndGet() == children.length) { //当所有Reactor关闭后 才认为是关闭成功 terminationFuture.setSuccess(null); } } }; //为所有Reactor添加terminationListener for (EventExecutor e: children) { e.terminationFuture().addListener(terminationListener); }
我们在回到文章开头 Netty服务端代码模板
public final class EchoServer { static final int PORT = Integer.parseInt(System.getProperty("port", "8007")); public static void main(String[] args) throws Exception { // Configure the server. //创建主从Reactor线程组 EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(); ...........省略............ } }
现在Netty的 主从Reactor线程组
就已经创建完毕,此时Netty服务端的骨架已经搭建完毕,骨架如下:
本文介绍了首先介绍了Netty对各种 IO模型
的支持以及如何轻松切换各种 IO模型
。
还花了大量的篇幅介绍Netty服务端的核心引擎 主从Reactor线程组
的创建过程。在这个过程中,我们还提到了Netty对各种细节进行的优化,展现了Netty对性能极致的追求。