Given an integer array nums, handle multiple queries of the following types:
Update the value of an element in nums.
Calculate the sum of the elements of nums between indices left and right inclusive where left <= right.
Implement the NumArray class:
NumArray(int[] nums) Initializes the object with the integer array nums.
void update(int index, int val) Updates the value of nums[index] to be val.
int sumRange(int left, int right) Returns the sum of the elements of nums between indices left and right inclusive (i.e. nums[left] + nums[left + 1] + … + nums[right]).
Example 1:
Input
[“NumArray”, “sumRange”, “update”, “sumRange”]
[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]
Output
[null, 9, null, 8]
Explanation:
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // return 1 + 3 + 5 = 9
numArray.update(1, 2); // nums = [1, 2, 5]
numArray.sumRange(0, 2); // return 1 + 2 + 5 = 8
Constraints:
从这一题学到了一个新的数据结构, segment tree, 但是拿数组实现的时候没有成功, 或者说是没有好的方法来构建, 于是就用最简单的二叉树形式来实现了。
segment tree 简单来说就是把一个数组不停的二分, 每个分出来的 slice 作为一个节点, 叶子节点为数组中的单个元素。每个节点可以保存加和、平均值之类的与其对应的 slice 有关的数据。 就这个题来讲, 我们在每个节点上保存了 slice 的加和, 查询的时候,如果查询的范围正好是当前节点 slice 的范围, 则我们直接返回这个加和, 否则的话继续向下查询。更新叶子节点的时候我们选择更新差值(新值-旧值), 从根节点开始遍历,所走过的节点的 slice 只要包含该叶子节点那该节点的加和就需要更新成 sum + diff。
use std::cell::RefCell;
use std::rc::Rc;
#[derive(Debug)]
struct NumArray {
nums: Vec<i32>,
tree: Option<Rc<RefCell<Node>>>,
}
#[derive(Debug)]
struct Node {
start: usize,
end: usize,
sum: i32,
left: Option<Rc<RefCell<Node>>>,
right: Option<Rc<RefCell<Node>>>,
}
impl Node {
fn new(start: usize, end: usize, sum: i32) -> Self {
Self {
start: start,
end: end,
sum: sum,
left: None,
right: None,
}
}
}
fn update(root: &Option<Rc<RefCell<Node>>>, index: usize, diff: i32) {
if let Some(node) = root {
let mut b = node.borrow_mut();
if b.start <= index && b.end >= index {
b.sum += diff;
update(&b.left, index, diff);
update(&b.right, index, diff);
}
}
}
fn query(root: &Option<Rc<RefCell<Node>>>, start: usize, end: usize) -> i32 {
if let Some(node) = root {
let b = node.borrow();
if start > b.end || end < b.start {
return 0;
}
if b.start >= start && b.end <= end {
return b.sum;
}
let left = query(&b.left, start, end);
let right = query(&b.right, start, end);
return left + right;
}
0
}
fn build_tree(nums: &Vec<i32>, start: usize, end: usize) -> Option<Rc<RefCell<Node>>> {
if start == end {
return Some(Rc::new(RefCell::new(Node::new(start, end, nums[start]))));
}
let sum: i32 = nums[start..=end].iter().map(|v| *v).sum();
let mut node = Node::new(start, end, sum);
let left = build_tree(nums, start, start + (end - start) / 2);
let right = build_tree(nums, start + (end - start) / 2 + 1, end);
node.left = left;
node.right = right;
Some(Rc::new(RefCell::new(node)))
}
/**
* `&self` means the method takes an immutable reference.
* If you need a mutable reference, change it to `&mut self` instead.
*/
impl NumArray {
fn new(nums: Vec<i32>) -> Self {
let tree = build_tree(&nums, 0, nums.len() - 1);
Self { nums, tree }
}
fn update(&mut self, index: i32, val: i32) {
let diff = val - self.nums[index as usize];
update(&self.tree, index as usize, diff);
self.nums[index as usize] = val;
}
fn sum_range(&self, left: i32, right: i32) -> i32 {
query(&self.tree, left as usize, right as usize)
}
}