import SimpleITK as sitk
demo_mask_path = "./seg.nii.gz"
demo_mask_image = sitk.ReadImage(demo_mask_path)
dilate_img=sitk.GrayscaleDilate(demo_mask_image , kernelRadius=[3,3,3])
sitk.WriteImage(dilate_img, "./dilatenii.gz")
效果类似下面这样:

参考:
GrayscaleErodeImageFilter,进而去SimpleITK的在线文档进行搜索itkGrayscaleErodeImageFilter这个类如果想搜索ITK的某些类,可以直接去SimpleITK的文档里去搜索,这里会显示那些ImageFilter的对应ITK中的说明文档。
例如:去文档中搜索erosion,可以得到以下结果,还是看一下哪个是自己需要的功能比较好




还有几个,这里就不放截图了
膨胀对应的ImageFilter是:
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkFlatStructuringElement.h"
#include "itkBinaryDilateImageFilter.h"
int main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " <inputImage> <outputImage> <radius>";
std::cerr << std::endl;
return EXIT_FAILURE;
}
const char * inputImage = argv[1];
const char * outputImage = argv[2];
const unsigned int radiusValue = std::stoi(argv[3]);
using PixelType = unsigned char;
constexpr unsigned int Dimension = 2;
using ImageType = itk::Image<PixelType, Dimension>;
const auto input = itk::ReadImage<ImageType>(inputImage);
using StructuringElementType = itk::FlatStructuringElement<Dimension>;
StructuringElementType::RadiusType radius;
radius.Fill(radiusValue);
StructuringElementType structuringElement = StructuringElementType::Ball(radius);
// 主要是这句
using BinaryDilateImageFilterType = itk::BinaryDilateImageFilter<ImageType, ImageType, StructuringElementType>;
BinaryDilateImageFilterType::Pointer dilateFilter = BinaryDilateImageFilterType::New();
dilateFilter->SetInput(input);
dilateFilter->SetKernel(structuringElement);
dilateFilter->SetForegroundValue(255); // Value to dilate
try
{
itk::WriteImage(dilateFilter->GetOutput(), outputImage);
}
catch (itk::ExceptionObject & error)
{
std::cerr << "Error: " << error << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
腐蚀对应的ImageFilter是:
我的使用场景:
import SimpleITK as sitk
demo_mask_path = "./seg.nii.gz"
demo_mask_image = sitk.ReadImage(demo_mask_path)
cropped_image = sitk.Crop(demo_mask_image ,lowerBoundaryCropSize=[0,0,0],upperBoundaryCropSize=[crop_size,0,0])
half_image_y_pad =sitk.ConstantPad(cropped_image ,padLowerBound=[0,0,0],padUpperBound=[crop_size,0,0],constant=0)
ConstantPad和Crop很像,只是一个是裁剪,一个是补充。
参考:
根据参考1,可以知道,
import SimpleITK as sitk
demo_mask_path = "./seg.nii.gz"
demo_mask_image = sitk.ReadImage(demo_mask_path)
demo_array = sitk.GetArrayFromImage(demo_mask_image)
# 进行一些数组切片操作
....
demo_image =sitk.GetImageFromArray(demo_array)
demo_image.CopyInformation(demo_mask_image )
参考:
参考:【SimpleITK教程】GetSize()方法和GetArrayFromImage()方法


即
padding_path="XXXX.nii.gz"
padding_image=sitk.ReadImage(padding_path)
print(padding_image.GetSize())
padding_array = sitk.GetArrayFromImage(padding_image)
print(padding_array.shape)
padding_array[78,131,80]
> (240, 240, 155) (x,y,z)
(155, 240, 240) (z,y,x)
2
我使用的数据比较简单,这里也就是个简单的预处理。
import SimpleITK as sitk
image_path = "./im.nii.gz"
image = sitk.ReadImage(image_path)
skull_mask =sitk.BinaryThreshold(image, lowerThreshold=125, upperThreshold=2000, insideValue=1, outsideValue=0)
# 在125~2000范围内的,赋值为1,范围外的,赋值为0。得到的mask就是125~2000这个强度值的内容,即骨骼。
类似下图:

参考: