HTTP 是超文本传输协议,也就是HyperText Transfer Protocol。
HTTP 是一个在计算机世界里专门在「两点」之间「传输」文字、图片、音频、视频等「超文本」数据的「约定和规范」。
那「HTTP 是用于从互联网服务器传输超文本到本地浏览器的协议 ,这种说法正确吗?
这种说法是不正确的。因为也可以是「服务器< – >服务器」,所以采用两点之间的描述会更准确。
1xx
类状态码属于提示信息,是协议处理中的一种中间状态,实际用到的比较少。
2xx
类状态码表示服务器成功处理了客户端的请求,也是我们最愿意看到的状态。
HEAD
请求,服务器返回的响应头都会有 body 数据。3xx
类状态码表示客户端请求的资源发生了变动,需要客户端用新的 URL 重新发送请求获取资源,也就是重定向。
301 和 302 都会在响应头里使用字段 Location
,指明后续要跳转的 URL,浏览器会自动重定向新的 URL。
4xx
类状态码表示客户端发送的报文有误,服务器无法处理,也就是错误码的含义。
5xx
类状态码表示客户端请求报文正确,但是服务器处理时内部发生了错误,属于服务器端的错误码。
① 状态码 301 和 302 的区别?
301:永久移动。请求的资源已被永久的移动到新的URI,旧的地址已经被永久的删除了。返回信息会包括新的URI,浏览器会自动定向到新的URI。今后新的请求都应使用新的URI代替。
302:临时移动。与301类似,客户端拿到服务端的响应消息后会跳转到一个新的 URL 地址。但资源只是临时被移动,旧的地址还在,客户端应继续使用原有URI。
② HTTP 异常状态码知道哪些?
该问题一般只需要回答 3, 4 , 5 开头的一些常见异常状态码即可。
Host
字段,就可以将请求发往「同一台」服务器上的不同网站。Content-Length
字段,表明本次回应的数据长度。Connection
字段常用于客户端要求服务器使用 TCP 持久连接,以便其他请求复用。HTTP/1.1 版本的默认连接都是持久连接,但为了兼容老版本的 HTTP,需要指定 Connection
首部字段的值为 Keep-Alive
。Content-Type
字段用于服务器回应时,告诉客户端,本次数据是什么格式。客户端请求的时候,可以使用 Accept
字段声明自己可以接受哪些数据格式。Content-Encoding
字段说明数据的压缩方法。表示服务器返回的数据使用了什么压缩格式。客户端在请求时,用 Accept-Encoding
字段说明自己可以接受哪些压缩方法。早期的 HTTP/1.0 中,浏览器每次 发起 HTTP 请求都要与服务器创建一个新的 TCP 连接,服务器完成请求处理后立即断开 TCP 连接,服务器不跟踪每个客户也不记录过去的请求。然而创建和关闭连接的过程需要消耗资源和时间,为了减少资源消耗,缩短响应时间,就需要重用连接。
在 HTTP/1.1 版本中默认使用持久连接,在此之前的 HTTP 版本的默认连接都是使用非持久连接,如果想要在旧版本的 HTTP 协议上维持持久连接,则需要指定 connection 的首部字段的值为 Keep-Alive 来告诉对方这个请求响应完成后不要关闭,下一次咱们还用这个请求继续交流。
对于非 Keep-Alive 来说,必须为每一个请求的对象建立和维护一个全新的连接。对于每一个这样的连接,客户机和服务器都要分配 TCP 的缓冲区和变量,这给服务器带来的严重的负担,因为一台 Web 服务器可能同时服务于数以百计的客户机请求。在 Keep-Alive 方式下,服务器在响应后保持该 TCP 连接打开,在同一个客户机与服务器之间的后续请求和响应报文可通过相同的连接进行传送。甚至位于同一台服务器的多个 Web 页面在从该服务器发送给同一个客户机时,可以在单个持久 TCP 连接上进行。然而,Keep-Alive 并不是没有缺点的,当长时间的保持 TCP 连接时容易导致系统资源被无效占用,若对 Keep-Alive 模式配置不当,将有可能比非 Keep-Alive 模式带来的损失更大。因此,我们需要正确地设置 keep-alive timeout 参数,当 TCP 连接在传送完最后一个 HTTP 响应,该连接会保持 keepalive_timeout 秒,之后就开始关闭这个链接。
长连接:多用于操作频繁,点对点的通讯,而且客户端连接数目较少的情况。例如即时通讯、网络游戏等。
短连接:用户数目较多的Web网站的 HTTP 服务一般用短连接。例如京东,淘宝这样的大型网站一般客户端数量达到千万级甚至上亿,若采用长连接势必会使得服务端大量的资源被无效占用,所以一般使用的是短连接。
HTTP/1.0 定义了三种请求方法:get(读取数据)、head(获取报头)、post(提交数据处理请求);
HTTP/1.1 增加了六种请求方法:put(增或换)、delete(删除)、options(返回支持方法)、connect(server代理访问)、trace(服务器返回接收数据)、patch(局部更新)
GET 的语义是从服务器获取指定的资源,GET 请求的参数位置一般是写在 URL 中,且请求参数会被完整的保留在浏览器的记录里,参数直接暴露在 URL 中,URL 规定只能支持 ASCII,所以 GET 请求的参数只允许 ASCII 字符 ,而且get 提交的数据大小有限制(这里所说的限制是针对浏览器而言的,浏览器会对 URL 的长度有限制,但HTTP协议本身对 URL长度并没有做任何规定噢)
POST 的语义是根据请求负荷(报文body)对指定的资源做出处理,具体的处理方式视资源类型而不同。POST 请求携带数据的位置一般是写在报文 body 中,且参数不会被保留, body 中的数据可以是任意格式的数据,只要客户端与服务端协商好即可,而且浏览器不会对 body 大小做限制。
补充:
get 方式需要使用 Request.QueryString 来取得变量的值,而 post 方式通过 Request.Form 来获取。
get 方法产生一个 TCP 数据包,post 方法产生两个(并不是所有的浏览器中都产生两个)。
安全和幂等的概念:
如果从 RFC 规范定义的语义来看:
注意, 上面是从 RFC 规范定义的语义来分析的。但是实际过程中,开发者不一定会按照 RFC 规范定义的语义来实现 GET 和 POST 方法。比如:
如果「安全」放入概念是指信息是否会被泄漏的话,虽然 POST 用 body 传输数据,而 GET 用 URL 传输,这样数据会在浏览器地址拦容易看到,但是并不能说 GET 不如 POST 安全的。因为 HTTP 传输的内容都是明文的,虽然在浏览器地址拦看不到 POST 提交的 body 数据,但是只要抓个包就都能看到了。所以,要避免传输过程中数据被窃取,就要使用 HTTPS 协议,这样所有 HTTP 的数据都会被加密传输。
GET 请求可以带 body 吗?
RFC 规范并没有规定 GET 请求不能带 body 的。理论上,任何请求都可以带 body 的。只是因为 RFC 规范定义的 GET 请求是获取资源,所以根据这个语义不需要用到 body。
另外,URL 中的查询参数也不是 GET 所独有的,POST 请求的 URL 中也可以有参数的。
HTTP 中的 GET 方法是通过 URL 传递数据的,而 URL 本身并没有对数据的长度进行限制,真正限制 GET 长度的是浏览器,例如 IE 浏览器对 URL 的最大限制为 2000多个字符,大概 2KB左右,像 Chrome, FireFox 等浏览器能支持的 URL 字符数更多,其中 FireFox 中 URL 最大长度限制为 65536 个字符,Chrome 浏览器中 URL 最大长度限制为 8182 个字符。并且这个长度不是只针对数据部分,而是针对整个 URL 而言,在这之中,不同浏览器对GET长度限制不同,同一浏览器访问不同服务器对GET长度限制也不同。
URL构成:协议 + 😕/ + 认证信息 + @ + 域名 or IP地址 + 端口号 + 资源路径 + ? + 查询字符串 + # + 片段标识符; 前文所说的整个URL长度是指包含上述所有组成部分在内的总长度,而数据部分是指查询字符串。
而由于 POST 方法请求参数在请求主体中,理论上讲,post 方法是没有大小限制的,真正起限制作用的是服务器处理程序的处理能力。
强缓存指的是只要浏览器判断缓存没有过期,则直接使用浏览器的本地缓存,决定是否使用缓存的主动性在于浏览器这边。强缓存是利用Cache-Control
和Expires
字段实现的,它们都用来表示资源在客户端缓存的有效期,如果 HTTP 响应头部同时有俩字段的话,Cache-Control的优先级高于 Expires 。
强缓存具体的实现流程如下:
协商缓存就是与服务端协商之后,通过协商结果来判断是否使用本地缓存。
协商缓存可以基于两种头部来实现。
第一种:请求头部中的 If-Modified-Since
字段与响应头部中的 Last-Modified
字段实现,这两个字段的意思是:
Last-Modified
:标示这个响应资源的最后修改时间;If-Modified-Since
:当资源过期了,发现响应头中具有 Last-Modified 声明,则再次发起请求的时候带上 Last-Modified 的时间,服务器收到请求后发现有 If-Modified-Since 则与被请求资源的最后修改时间进行对比(Last-Modified),如果最后修改时间较新(大),说明资源又被改过,则返回最新资源,HTTP 200 OK;如果最后修改时间较旧(小),说明资源无新修改,响应 HTTP 304 走缓存。第二种:请求头部中的 If-None-Match
字段与响应头部中的 ETag
字段,这两个字段的意思是:
Etag
:唯一标识响应资源;If-None-Match
:当资源过期时,浏览器发现响应头里有 Etag,则再次向服务器发起请求时,会将请求头If-None-Match 值设置为 Etag 的值。服务器收到请求后进行比对,如果资源没有变化返回 304,如果资源变化了返回 200。第一种实现方式是基于时间实现的,第二种实现方式是基于一个唯一标识实现的,相对来说后者可以更加准确地判断文件内容是否被修改,避免由于时间篡改导致的不可靠问题。如果 HTTP 响应头部同时有 Etag 和 Last-Modified 字段的时候, Etag 的优先级更高,也就是先会判断 Etag 是否变化了,如果 Etag 没有变化,然后再看 Last-Modified。
注意,协商缓存这两个字段都需要配合强制缓存中 Cache-control 字段来使用,只有在未能命中强制缓存的时候,才能发起带有协商缓存字段的请求。
使用 ETag 字段实现的协商缓存的过程如下:
假如某个特定的客户机在短时间内两次请求同一个对象,服务器并不会因为刚刚为该用户提供了该对象就不再做出反应,而是重新发送该对象,就像该服务器已经完全忘记不久之前所做过的是一样。因为一个 HTTP 服务器并不保存关于客户机的任何信息,所以我们说 HTTP 是一个无状态协议。
通常有两种解决方案:
在客户端第一次向服务器发送 HTTP 请求后,服务器会创建一个 Session 对象并将客户端的身份信息以键值对的形式存储下来,然后分配一个会话标识(SessionId)给客户端,这个会话标识一般保存在客户端 Cookie 中,之后每次该浏览器发送 HTTP 请求都会带上 Cookie 中的 SessionId 到服务器,服务器根据会话标识就可以将之前的状态信息与会话联系起来,从而实现会话保持。
优点:安全性高,因为状态信息保存在服务器端。
缺点:由于大型网站往往采用的是分布式服务器,浏览器发送的 HTTP 请求一般要先通过负载均衡器才能到达具体的后台服务器,倘若同一个浏览器两次 HTTP 请求分别落在不同的服务器上时,基于 Session 的方法就不能实现会话保持了。【解决方法:采用中间件,例如 Redis,我们通过将 Session 的信息存储在 Redis 中,使得每个服务器都可以访问到之前的状态信息】
当服务器发送响应消息时,在 HTTP 响应头中设置 Set-Cookie 字段,用来存储客户端的状态信息。客户端解析出 HTTP 响应头中的字段信息,并根据其生命周期创建不同的 Cookie,这样一来每次浏览器发送 HTTP 请求的时候都会带上 Cookie 字段,从而实现状态保持。基于 Cookie 的会话保持与基于 Session 实现的会话保持最主要的区别是前者完全将会话状态信息存储在浏览器 Cookie 中。
优点:服务器不用保存状态信息, 减轻服务器存储压力,同时便于服务端做水平拓展。
缺点:该方式不够安全,因为状态信息存储在客户端,这意味着不能在会话中保存机密数据。除此之外,浏览器每次发起 HTTP 请求时都需要发送额外的 Cookie 到服务器端,会占用更多带宽。
后者完全将会话状态存储在浏览器Cookie中。
若遇到 Cookie 被禁用的情况,则可以通过重写 URL 的方式将会话标识放在 URL 的参数里,也可以实现会话保持。
「简单、灵活和易于扩展、应用广泛和跨平台」
header + body
,头部信息也是 key-value
简单文本的形式,易于理解,降低了学习和使用的门槛。OSI
第七层),则它下层可以随意变化。HTTPS 也就是在 HTTP 与 TCP 层之间增加了 SSL/TLS 安全传输层,HTTP/3 甚至把 TCP 层换成了基于 UDP 的 QUIC。优缺点一体的双刃剑,分别是「无状态、明文传输」,同时还有一大缺点「不安全」。
无状态的好处,因为服务器不会去记忆 HTTP 的状态,所以不需要额外的资源来记录状态信息,这能减轻服务器的负担,能够把更多的 CPU 和内存用来对外提供服务。
无状态的坏处,既然服务器没有记忆能力,它在完成有关联性的操作时会非常麻烦。例如登录->添加购物车->下单->结算->支付,这系列操作都要知道用户的身份才行。但服务器不知道这些请求是有关联的,每次都要问一遍身份信息。这样每操作一次,都要验证信息,这样的购物体验还能愉快吗?别问,问就是酸爽!
对于无状态的问题,解法方案有很多种,其中比较简单的方式用 Cookie 技术。Cookie
通过在请求和响应报文中写入 Cookie 信息来控制客户端的状态。相当于,在客户端第一次请求后,服务器会下发一个装有客户信息的「小贴纸」,后续客户端请求服务器的时候,带上「小贴纸」,服务器就能认得了。
明文意味着在传输过程中的信息,是可方便阅读的,通过浏览器的 F12 控制台或 Wireshark 抓包都可以直接肉眼查看,为我们调试工作带了极大的便利性。但是这正是这样,HTTP 的所有信息都暴露在了光天化日下,相当于信息裸奔。在传输的漫长的过程中,信息的内容都毫无隐私可言,很容易就能被窃取,如果里面有你的账号密码信息,那你号没了。
HTTP 的安全问题,可以用 HTTPS 的方式解决,也就是通过引入 SSL/TLS 层,使得在安全上达到了极致。
HTTP 协议是基于 TCP/IP,并且使用了「请求 - 应答」的通信模式,所以性能的关键就在这两点里。总之 HTTP/1.1 的性能一般般,后续的 HTTP/2 和 HTTP/3 就是在优化 HTTP 的性能。
HTTP/1.1 提出了长连接的通信方式,也叫持久连接。这种方式的好处在于减少了 TCP 连接的重复建立和断开所造成的额外开销,减轻了服务器端的负载。
在同一个 TCP 连接里面,客户端可以发起多个请求,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。但是服务器必须按照接收请求的顺序发送对这些管道化请求的响应。如果服务端在处理 A 请求时耗时比较长,那么后续的请求的处理都会被阻塞住,这称为「队头堵塞」。所以,HTTP/1.1 管道解决了请求的队头阻塞,但是没有解决响应的队头阻塞。
注意:实际上 HTTP/1.1 管道化技术不是默认开启,而且浏览器基本都没有支持,所以后面讨论HTTP/1.1 都是建立在没有使用管道化的前提。
因为当顺序发送的请求序列中的一个请求因为某种原因被阻塞时,在后面排队的所有请求也一同被阻塞了,会招致客户端一直请求不到数据,这也就是「队头阻塞」,好比上班的路上塞车。
HTTPS 在 HTTP 与 TCP 层之间加入了 SSL/TLS
协议,解决了一些风险:
HTTPS 是如何解决三个风险的?
HTTPS 采用对称加密和非对称加密相结合的方式,首先使用 SSL/TLS 协议进行加密传输,为了弥补非对称加密的缺点,HTTPS 采用证书来进一步加强非对称加密的安全性,通过非对称加密,客户端和服务端协商好之后进行通信传输的对称密钥,后续的所有信息都通过该对称秘钥进行加密解密,完成整个 HTTPS 的流程。
摘要算法的方式来实现完整性,它能够为数据生成独一无二的「指纹」,指纹用于校验数据的完整性,解决了篡改的风险。
在计算机里会用摘要算法(哈希函数)来计算出内容的哈希值,也就是内容的「指纹」,这个哈希值是唯一的,且无法通过哈希值推导出内容。通过哈希算法可以确保内容不会被篡改,但是并不能保证「内容 + 哈希值」不会被中间人替换,因为这里缺少对客户端收到的消息是否来源于服务端的证明。
为了避免这种情况,计算机里会用非对称加密算法来解决,共有两个密钥:
这两个密钥可以双向加解密的,比如可以用公钥加密内容,然后用私钥解密,也可以用私钥加密内容,公钥解密内容。流程的不同,意味着目的也不相同:
一般不用非对称加密来加密实际的传输内容,因为非对称加密的计算比较耗费性能的。所以非对称加密的用途主要在于通过「私钥加密,公钥解密」来确认消息的身份,常说的数字签名算法,就是用的是这种方式,不过私钥加密内容不是内容本身,而是对内容的哈希值加密。
私钥是由服务端保管,然后服务端会向客户端颁发对应的公钥。如果客户端收到的信息,能被公钥解密,就说明该消息是由服务器发送的。
CA 签发证书的过程,如上图左边部分:
客户端校验服务端的数字证书的过程,如上图右边部分:
假设中间人篡改了证书原文,由于他没有 CA 机构的私钥,所以无法得到此时加密后的签名,因此无法篡改签名。客户端浏览器收到该证书后会发现原文和签名解密后的值不一致,则说明证书被中间人篡改,证书不可信,从而终止向服务器传输信息。
上述过程说明证书无法被篡改,考虑下更严重的情况,如中间人拿到了 CA 机构认证的证书,它想窃取网站 A 发送给客户端的信息,于是它成为中间人拦截到了 A 传给客户端的证书,然后将其替换为自己的证书。此时客户端浏览器收到的是被中间人掉包后的证书,但证书里包含了客户端请求的网站信息,因此客户端浏览器只需要把证书里的域名与自己请求的域名比对一下就知道证书有没有被掉包了。
HTTP(Hyper Text Transfer Protocol: 超文本传输协议) 是一种简单的请求 - 响应协议,被用于在 Web 浏览器和网站服务器之间传递消息。HTTP 使用 TCP(而不是 UDP)作为它的支撑运输层协议。其默认工作在 TCP 协议 80 端口,HTTP 客户机发起一个与服务器的 TCP 连接,一旦连接建立,浏览器和服务器进程就可以通过套接字接口访问 TCP。客户机从套接字接口发送 HTTP 请求报文和接收 HTTP 响应报文。类似地,服务器也是从套接字接口接收 HTTP 请求报文和发送 HTTP 响应报文。其通信内容以明文的方式发送,不通过任何方式的数据加密。当通信结束时,客户端与服务器关闭连接。
HTTPS(Hyper Text Transfer Protocol over Secure Socket Layer)是以安全为目标的 HTTP 协议,在 HTTP 的基础上通过传输加密和身份认证的方式保证了传输过程的安全性。
SSL/TLS 协议基本流程:
SSL/TLS 协议建立的详细流程:
1. ClientHello
首先,由客户端向服务器发起加密通信请求,也就是 ClientHello
请求。
在这一步,客户端主要向服务器发送以下信息:
(1)客户端支持的 SSL/TLS 协议版本,如 TLS 1.2 版本。
(2)客户端生产的随机数(Client Random
),后面用于生成「会话秘钥」条件之一。
(3)客户端支持的密码套件列表,如 RSA 加密算法。
2. SeverHello
服务器收到客户端请求后,向客户端发出响应,也就是 SeverHello
。服务器回应的内容有如下内容:
(1)确认 SSL/ TLS 协议版本,如果浏览器不支持,则关闭加密通信。
(2)服务器生产的随机数(Server Random
),也是后面用于生产「会话秘钥」条件之一。
(3)确认的密码套件列表,如 RSA 加密算法。
(4)服务器的数字证书。
3.客户端回应
客户端收到服务器的回应之后,首先通过浏览器或者操作系统中的 CA 公钥,确认服务器的数字证书的真实性。
如果证书没有问题,客户端会从数字证书中取出服务器的公钥,然后使用它加密报文,向服务器发送如下信息:
(1)一个随机数(pre-master key
)。该随机数会被服务器公钥加密。
(2)加密通信算法改变通知,表示随后的信息都将用「会话秘钥」加密通信。
(3)客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时把之前所有内容的发生的数据做个摘要,用来供服务端校验。
上面第一项的随机数是整个握手阶段的第三个随机数,会发给服务端,所以这个随机数客户端和服务端都是一样的。
服务器和客户端有了这三个随机数(Client Random、Server Random、pre-master key),接着就用双方协商的加密算法,各自生成本次通信的「会话秘钥」。
4. 服务器的最后回应
服务器收到客户端的第三个随机数(pre-master key
)之后,通过协商的加密算法,计算出本次通信的「会话秘钥」。
然后,向客户端发送最后的信息:
(1)加密通信算法改变通知,表示随后的信息都将用「会话秘钥」加密通信。
(2)服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时把之前所有内容的发生的数据做个摘要,用来供客户端校验。
至此,整个 SSL/TLS 的握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的 HTTP 协议,只不过用「会话秘钥」加密内容。
HTTP/1.1 相比 HTTP/1.0 性能上的改进:
使用长连接的方式改善了 HTTP/1.0 短连接造成的性能开销。
(HTTP/1.0 默认浏览器和服务器之间保持短暂连接,浏览器的每次请求都需要与服务器建立一个 TCP 连接,服务器完成后立即断开 TCP 连接。HTTP/1.1 默认使用的是持久连接,其支持在同一个 TCP 请求中传送多个 HTTP 请求和响应。此之前的 HTTP 版本的默认连接都是使用非持久连接,如果想要在旧版本的 HTTP 协议上维持持久连接,则需要指定 Connection 的首部字段的值为 Keep-Alive。)
支持管道(pipeline)网络传输,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。
**缓存处理:**在 HTTP/1.0 中主要使用 header 里的 if-modified-Since, Expries 来做缓存判断的标准。而 HTTP/1.1 请求头中添加了更多与缓存相关的字段,从而支持更为灵活的缓存策略,例如 Entity-tag, If-Unmodified-Since, If-Match, If-None-Match 等可供选择的缓存头来控制缓存策略。
节约带宽: 当客户端请求某个资源时,HTTP/1.0 默认将该资源相关的整个对象传送给请求方,但很多时候可能客户端并不需要对象的所有信息。而在 HTTP/1.1 的请求头中引入了 range 头域,它允许只请求部分资源,其使得开发者可以多线程请求某一资源,从而充分的利用带宽资源,实现高效并发。
**错误通知的管理:**HTTP/1.1 在 1.0 的基础上新增了 24 个错误状态响应码,例如 414 表示客户端请求中所包含的 URL 地址太长,以至于服务器无法处理;410 表示所请求的资源已经被永久删除。
**Host 请求头:**早期 HTTP/1.0 中认为每台服务器都绑定一个唯一的 IP 地址并提供单一的服务,请求消息中的 URL 并没有传递主机名。而随着虚拟主机的出现,一台物理服务器上可以存在多个虚拟主机,并且它们共享同一个 IP 地址。为了支持虚拟主机,HTTP/1.1 中添加了 host 请求头,请求消息和响应消息中应声明这个字段,若请求消息中缺少该字段时服务端会响应一个 404 错误状态码。
但 HTTP/1.1 还是有性能瓶颈:
Body
的部分;相比于 HTTP/1.X 的文本(字符串)传送, HTTP/2.0 采用二进制传送。头信息和数据体都是二进制,并且统称为帧(frame):头信息帧(Headers Frame)和数据帧(Data Frame)。计算机只懂二进制,那么收到报文后,无需再将明文的报文转成二进制,而是直接解析二进制报文,这增加了数据传输的效率。
HTTP/2 的数据包不是按顺序发送的,同一个连接里面连续的数据包,可能属于不同的回应。因此,必须要对数据包做标记,指出它属于哪个回应。在 HTTP/2 中每个请求或相应的所有数据包,称为一个数据流(Stream
)。每个数据流都标记着一个独一无二的编号(Stream ID),不同 Stream 的帧是可以乱序发送的(因此可以并发不同的 Stream ),因为每个帧的头部会携带 Stream ID 信息,所以接收端可以通过 Stream ID 有序组装成 HTTP 消息客户端和服务器双方都可以建立 Stream, Stream ID 也是有区别的,客户端建立的 Stream 必须是奇数号,而服务器建立的 Stream 必须是偶数号。客户端还可以指定数据流的优先级。优先级高的请求,服务器就先响应该请求。流具有流 ID 标识和优先级,通过优先级以及流依赖能够一定程度上解决关键请求被阻塞的问题。
HTTP/2.0 支持多路复用。HTTP/2 是可以在一个连接中并发多个请求或回应,而不用按照顺序一一对应。移除了 HTTP/1.1 中的串行请求,不需要排队等待,也就不会再出现「队头阻塞」问题,降低了延迟,大幅度提高了连接的利用率。因为流 ID 的存在, 通过同一个 HTTP 请求可以实现多个 HTTP 请求传输,客户端和服务器可以通过流 ID 来标识究竟是哪个流从而定位到是哪个 HTTP 请求。
HTTP/2.0 头部压缩。HTTP/2.0 通过 gzip 和 compress 压缩头部然后再发送,同时通信双方会维护一张头信息表,所有字段都记录在这张表中,在每次 HTTP 传输时只需要传头字段在表中的索引即可,大大减小了重传次数和数据量。如果你同时发出多个请求,他们的头是一样的或是相似的,那么,协议会帮你消除重复的部分。这就是所谓的 HPACK
算法:在客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。
HTTP/2.0 支持服务器推送。HTTP/2 还在一定程度上改善了传统的「请求 - 应答」工作模式,服务端不再是被动地响应,可以主动向客户端发送消息。 服务器在客户端未经请求许可的情况下,可预先向客户端推送需要的内容,客户端在退出服务时可通过发送复位相关的请求来取消服务端的推送。
比如,客户端通过 HTTP/1.1 请求从服务器那获取到了 HTML 文件,而 HTML 可能还需要依赖 CSS 来渲染页面,这时客户端还要再发起获取 CSS 文件的请求,需要两次消息往返,如下图左边部分。而如下图右边部分,在 HTTP/2 中,客户端在访问 HTML 时,服务器可以直接主动推送 CSS 文件,减少了消息传递的次数。
HTTP/2 通过 Stream 的并发能力,解决了 HTTP/1 队头阻塞的问题,看似很完美了,但是 HTTP/2 还是存在**“队头阻塞”**的问题,只不过问题不是在 HTTP 这一层面,而是在 TCP 这一层。
HTTP/2 是基于 TCP 协议来传输数据的,TCP 是字节流协议,TCP 层必须保证收到的字节数据是完整且连续的,这样内核才会将缓冲区里的数据返回给 HTTP 应用,那么当「前 1 个字节数据」没有到达时,后收到的字节数据只能存放在内核缓冲区里,只有等到这 1 个字节数据到达时,HTTP/2 应用层才能从内核中拿到数据,这就是 HTTP/2 队头阻塞问题。
图中发送方发送了很多个 packet,每个 packet 都有自己的序号,你可以认为是 TCP 的序列号,其中 packet 3 在网络中丢失了,即使 packet 4-6 被接收方收到后,由于内核中的 TCP 数据不是连续的,于是接收方的应用层就无法从内核中读取到,只有等到 packet 3 重传后,接收方的应用层才可以从内核中读取到数据,这就是 HTTP/2 的队头阻塞问题,是在 TCP 层面发生的。
所以,一旦发生了丢包现象,就会触发 TCP 的重传机制,这样在一个 TCP 连接中的所有的 HTTP 请求都必须等待这个丢了的包被重传回来。
HTTP/2 队头阻塞的问题是因为 TCP,所以 **HTTP/3 把 HTTP 下层的 TCP 协议改成了 UDP!**UDP 发生是不管顺序,也不管丢包的,所以不会出现像 HTTP/2 队头阻塞的问题, UDP 是不可靠传输的,但基于 UDP 的 QUIC 协议 可以实现类似 TCP 的可靠性传输。HTTP/3使用 QPACK 进行头部压缩,因为 在 HTTP/2 中的 HPACK 要求传输过程有序,这会导致队头阻塞,而 QPACK 不存在这个问题。 HTTP/3 的 QPACK 通过两个特殊的单向流来同步双方的动态表,解决了 HTTP/2 的 HPACK 队头阻塞问题。
QUIC(Quick UDP Internet Connections),直译为快速 UDP 网络连接,是谷歌制定的一种基于 UDP 的低延迟传输协议。其主要目的是解决采用传输层 TCP 协议存在的问题,同时满足传输层和应用层对多连接、低延迟等的需求。该协议融合了 TCP, TLS, HTTP/2 等协议的特性,并基于 UDP传输。
QUIC 有自己的一套机制可以保证传输的可靠性的。当某个流发生丢包时,只会阻塞这个流,其他流不会受到影响,因此不存在队头阻塞问题。这与 HTTP/2 不同,HTTP/2 只要某个流中的数据包丢失了,其他流也会因此受影响。
对于 HTTP/1 和 HTTP/2 协议,TCP 和 TLS 是分层的,分别属于内核实现的传输层、openssl 库实现的表示层,因此它们难以合并在一起,需要分批次来握手,先 TCP 握手,再 TLS 握手。HTTP/3 在传输数据前虽然需要 QUIC 协议握手,这个握手过程只需要 1 RTT,握手的目的是为确认双方的「连接 ID」,连接迁移就是基于连接 ID 实现的。
当客户端第一次连接服务器时,QUIC 只需要 1 RTT(Round-Trid Time)延迟就可以建立安全可靠的连接(采用 TLS 1.3 版本),相比于 TCP + TLS 的 3 次 RTT 要更加快捷。之后,客户端可以在本地缓存加密的认证信息,当再次与服务器建立连接时,甚至应用数据包可以和 QUIC 握手信息(连接信息 + TLS 信息)一起发送,达到 0-RTT 的效果。
基于 TCP 传输协议的 HTTP 协议,由于是通过四元组(源 IP、源端口、目的 IP、目的端口)确定一条 TCP 连接,那么当移动设备的网络从 4G 切换到 WIFI 时,意味着 IP 地址变化了,那么就必须要断开连接,然后重新建立连接。而建立连接的过程包含 TCP 三次握手和 TLS 四次握手的时延,以及 TCP 慢启动的减速过程,给用户的感觉就是网络突然卡顿了一下,因此连接的迁移成本是很高的。
而 QUIC 协议没有用四元组的方式来“绑定”连接,而是通过连接 ID来标记通信的两个端点,客户端和服务器可以各自选择一组 ID 来标记自己,因此即使移动设备的网络变化后,导致 IP 地址变化了,只要仍保有上下文信息(比如连接 ID、TLS 密钥等),就可以“无缝”地复用原连接,消除重连的成本,没有丝毫卡顿感,达到了连接迁移的功能。
QUIC 是新协议,对于很多网络设备,根本不知道什么是 QUIC,只会当做 UDP,这样会出现新的问题,因为有的网络设备是会丢掉 UDP 包的,而 QUIC 是基于UDP 实现的,那么如果网络设备无法识别这个是 QUIC 包,那么就会当作 UDP包,然后被丢弃。
所以,HTTP/3 现在普及的进度非常的缓慢,不知道未来 UDP 是否能够逆袭 TCP。
基于 UDP 协议的 QUIC 运行在用户域而不是系统内核,这使得 QUIC 协议可以快速的更新和部署,从而很好地解决了 TPC 协议部署及更新的困难。
QUIC 的报文是经过加密和认证的,除了少量的报文,其它所有的 QUIC 报文头部都经过了认证,报文主体经过了加密。只要有攻击者篡改 QUIC 报文,接收端都能及时发现。
具有向前纠错机制,每个数据包携带了除了本身内容外的部分其他数据包的内容,使得在出现少量丢包的情况下,尽量地减少其它包的重传次数,其通过牺牲单个包所携带的有效数据大小换来更少的重传次数,这在丢包数量较小的场景下能够带来一定程度的性能提升。
解析 URL、DNS 解析、TCP 连接、 发送 HTTP 请求、 处理请求并返回、浏览器渲染、断开连接。
对 URL
进行解析,从而生成发送给 Web
服务器的请求信息。
要是上图中的蓝色部分 URL 元素都省略了,那应该是请求哪个文件呢?
当没有路径名时,就代表访问根目录下事先设置的默认文件,也就是 /index.html
或者 /default.html
这些文件,这样就不会发生混乱了。
生产 HTTP 请求信息
对 URL
进行解析之后,浏览器确定了 Web 服务器和文件名,接下来就是根据这些信息来生成 HTTP 请求消息了。
只要能唯一标识资源的就是 URI,在 URI 的基础上给出其资源的访问方式的就是 URL。
URL 是 URI 的一个子集,URI:告诉你有这个资源;URL:告诉你这个资源在哪里
通过浏览器解析 URL 并生成 HTTP 消息后,需要委托操作系统将消息发送给 Web
服务器。
但在发送之前,还有一项工作需要完成,那就是查询服务器域名对应的 IP 地址,因为委托操作系统发送消息时,必须提供通信对象的 IP 地址。所以,有一种服务器就专门保存了 Web
服务器域名与 IP
的对应关系,它就是 DNS
服务器。
作用:进行主机名到 IP 地址转换的目录服务,域名系统作为将域名和 IP 地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。
域名的层级关系类似一个树状结构:
上图展示了 DNS 服务器的部分层次结构,从上到下依次为根域名服务器、顶级域名服务器和权威域名服务器。其实根域名服务器在因特网上有13个,大部分位于北美洲。客户端只要能够找到任意一台 DNS 服务器,就可以通过它找到根域 DNS 服务器,然后再一路顺藤摸瓜找到位于下层的某台目标 DNS 服务器。
至此,我们完成了 DNS 的解析过程。现在总结一下,整个过程我画成了一个图。
DNS 域名解析的过程蛮有意思的,整个过程就和我们日常生活中找人问路的过程类似,只指路不带路。
那是不是每次解析域名都要经过那么多的步骤呢?
浏览器会先看自身有没有对这个域名的缓存,如果有,就直接返回,如果没有,就去问操作系统,操作系统也会去看自己的缓存,如果有,就直接返回,如果没有,再去 hosts 文件看,也没有,才会去问「本地 DNS 服务器」。
从速度和传输内容长度两方面考虑,其实更正确的答案是 DNS 既使用 TCP 又使用 UDP。
当进行区域传送(主域名服务器向辅助域名服务器传送更新数据 / 或者添加新的DNS服务器到区域中)时会使用 TCP,因为数据同步传送的数据量比一个请求和应答的数据量要多,而 TCP 允许的报文长度更长,因此为了保证数据的正确性,会使用基于可靠连接的 TCP。
当客户端向 DNS 服务器查询域名 ( 域名解析) 的时候,一般返回的内容不会超过 UDP 报文的最大长度,即 512 字节。用 UDP 传输时,不需要经过 TCP 三次握手的过程,从而大大提高了响应速度,但这要求域名解析器和域名服务器都必须自己处理超时和重传从而保证可靠性。
域名劫持,是通过将原域名对应的 IP 地址进行替换从而使得用户访问到错误的网站或者使得用户无法正常访问网站的一种攻击方式。域名劫持往往只能在特定的网络范围内进行,范围外的 DNS 服务器能够返回正常的 IP 地址。
具体实施步骤如下:
① 获取要劫持的域名信息:攻击者首先会访问域名查询站点查询要劫持的域名信息。
② 控制域名相应的 E-MAIL 账号:在获取到域名信息后,攻击者通过暴力破解或者专门的方法破解公司注册域名时使用的 E-mail 账号所对应的密码。更高级的攻击者甚至能够直接对 E-mail 进行信息窃取。
③ 修改注册信息:当攻击者破解了 E-MAIL 后,会利用相关的更改功能修改该域名的注册信息,包括域名拥有者信息,DNS 服务器信息等。
④ 使用 E-MAIL 收发确认函:在修改完注册信息后,攻击者在 E-mail 真正拥有者之前收到修改域名注册信息的相关确认信息,并回复确认修改文件,待网络公司恢复已成功修改信件后,攻击者便成功完成 DNS 劫持。
用户端的一些预防手段:
直接通过 IP 地址访问网站,避开 DNS 劫持。
由于域名劫持往往只能在特定的网络范围内进行,因此一些高级用户可以通过网络设置让 DNS 指向正常的域名服务器以实现对目的网址的正常访问,例如将计算机首选 DNS 服务器的地址固定为 8.8.8.8。
通过 DNS 获取到 IP 后,就可以把 HTTP 的传输工作交给操作系统中的协议栈。协议栈的内部分为几个部分,分别承担不同的工作。上下关系是有一定的规则的,上面的部分会向下面的部分委托工作,下面的部分收到委托的工作并执行。
应用程序(浏览器)通过调用 Socket 库,来委托协议栈工作。协议栈的上半部分有两块,分别是负责收发数据的 TCP 和 UDP 协议,这两个传输协议会接受应用层的委托执行收发数据的操作。
协议栈的下面一半是用 IP 协议控制网络包收发操作,在互联网上传数据时,数据会被切分成一块块的网络包,而将网络包发送给对方的操作就是由 IP 负责的。
此外 IP 中还包括 ICMP
协议和 ARP
协议。
ICMP
用于告知网络包传送过程中产生的错误以及各种控制信息。ARP
用于根据 IP 地址查询相应的以太网 MAC 地址。IP 下面的网卡驱动程序负责控制网卡硬件,而最下面的网卡则负责完成实际的收发操作,也就是对网线中的信号执行发送和接收操作。
源端口号和目标端口号是不可少的,如果没有这两个端口号,数据就不知道应该发给哪个应用。接下来有包的序号,这个是为了解决包乱序的问题。还有确认号,目的是确认发出去对方是否有收到。如果没有收到就应该重新发送,直到送达,这个是为了解决不丢包的问题。还有一些状态位。例如 SYN
是发起一个连接,ACK
是回复,RST
是重新连接,FIN
是结束连接等。TCP 是面向连接的,因而双方要维护连接的状态,这些带状态位的包的发送,会引起双方的状态变更。还有窗口大小。TCP 要做流量控制,通信双方各声明一个窗口(缓存大小),标识自己当前能够的处理能力,别发送的太快,撑死我,也别发的太慢,饿死我。除了做流量控制以外,TCP还会做拥塞控制,对于真正的通路堵车不堵车,它无能为力,唯一能做的就是控制自己,也即控制发送的速度。不能改变世界,就改变自己嘛。
TCP 传输数据之前,要先三次握手建立连接。
CLOSED
状态。先是服务端主动监听某个端口,处于 LISTEN
状态。SYN
,之后处于 SYN-SENT
状态。SYN
,并且 ACK
客户端的 SYN
,之后处于 SYN-RCVD
状态。SYN
和 ACK
之后,发送对 SYN
确认的 ACK
,之后处于 ESTABLISHED
状态,因为它一发一收成功了。ACK
的 ACK
之后,处于 ESTABLISHED
状态,因为它也一发一收了。所以三次握手目的是保证双方都有发送和接收的能力。
TCP 的连接状态查看,在 Linux 可以通过 netstat -napt
命令查看。
如果 HTTP 请求消息比较长,超过了 MSS
的长度,这时 TCP 就需要把 HTTP 的数据拆解成一块块的数据发送,而不是一次性发送所有数据。
MTU
:一个网络包的最大长度,以太网中一般为 1500
字节。MSS
:除去 IP 和 TCP 头部之后,一个网络包所能容纳的 TCP 数据的最大长度。数据会被以 MSS
的长度为单位进行拆分,拆分出来的每一块数据都会被放进单独的网络包中。也就是在每个被拆分的数据加上 TCP 头信息,然后交给 IP 模块来发送数据。
TCP 协议里面会有两个端口,一个是浏览器监听的端口(通常是随机生成的),一个是 Web 服务器监听的端口(HTTP 默认端口号是 80
, HTTPS 默认端口号是 443
)。在双方建立了连接后,TCP 报文中的数据部分就是存放 HTTP 头部 + 数据,组装好 TCP 报文之后,就需交给下面的网络层处理。
TCP 模块在执行连接、收发、断开等各阶段操作时,都需要委托 IP 模块将数据封装成网络包发送给通信对象。
在 IP 协议里面需要有源地址 IP 和 目标地址 IP:
因为 HTTP 是经过 TCP 传输的,所以在 IP 包头的协议号,要填写为 06
(十六进制),表示协议为 TCP。
假设客户端有多个网卡,就会有多个 IP 地址,那 IP 头部的源地址应该选择哪个 IP 呢?
当存在多个网卡时,在填写源地址 IP 时,就需要判断到底应该填写哪个地址。这个判断相当于在多块网卡中判断应该使用哪个一块网卡来发送包。
这个时候就需要根据路由表规则,来判断哪一个网卡作为源地址 IP。
在 Linux 操作系统,我们可以使用 route -n
命令查看当前系统的路由表。
举个例子,根据上面的路由表,我们假设 Web 服务器的目标地址是 192.168.10.200
。
Genmask
)进行 与运算,得到结果为 192.168.10.0
,但是第一个条目的 Destination
是 192.168.3.0
,两者不一致所以匹配失败。192.168.10.0
,与第二条目的 Destination 192.168.10.0
匹配成功,所以将使用 eth1
网卡的 IP 地址作为 IP 包头的源地址。那么假设 Web 服务器的目标地址是 10.100.20.100
,那么依然依照上面的路由表规则判断,判断后的结果是和第三条目匹配。
第三条目比较特殊,它目标地址和子网掩码都是 0.0.0.0
,这表示默认网关,如果其他所有条目都无法匹配,就会自动匹配这一行。并且后续就把包发给路由器,Gateway
即是路由器的 IP 地址。
至此,网络包的报文生成啦。
生成了 IP 头部之后,接下来网络包还需要在 IP 头部的前面加上 MAC 头部。MAC 头部是以太网使用的头部,它包含了接收方和发送方的 MAC 地址等信息。
在 MAC 包头里需要发送方 MAC 地址和接收方目标 MAC 地址,用于两点之间的传输。
一般在 TCP/IP 通信里,MAC 包头的协议类型只使用:
0800
: IP 协议0806
: ARP 协议MAC 发送方和接收方如何确认?
发送方的 MAC 地址获取就比较简单了,MAC 地址是在网卡生产时写入到 ROM 里的,只要将这个值读取出来写入到 MAC 头部就可以了。接收方的 MAC 地址就有点复杂了,只要告诉以太网对方的 MAC 的地址,以太网就会帮我们把包发送过去,那么很显然这里应该填写对方的 MAC 地址。
所以先得搞清楚应该把包发给谁,这个只要查一下路由表就知道了。在路由表中找到相匹配的条目,然后把包发给 Gateway
列中的 IP 地址就可以了。
既然知道要发给谁,按如何获取对方的 MAC 地址呢?
需要 ARP
协议帮我们找到路由器的 MAC 地址。
好像每次都要广播获取,这不是很麻烦吗?
放心,在后续操作系统会把本次查询结果放到一块叫做 ARP 缓存的内存空间留着以后用,不过缓存的时间就几分钟。
也就是说,在发包时:
查看 ARP 缓存内容
在 Linux 系统中,我们可以使用 arp -a
命令来查看 ARP 缓存的内容。
网络包只是存放在内存中的一串二进制数字信息,没有办法直接发送给对方。因此,我们需要将数字信息转换为电信号,才能在网线上传输,也就是说,这才是真正的数据发送过程。
负责执行这一操作的是网卡,要控制网卡还需要靠网卡驱动程序。
网卡驱动获取网络包之后,会将其复制到网卡内的缓存区中,接着会在其开头加上报头和起始帧分界符,在末尾加上用于检测错误的帧校验序列。
FCS
(帧校验序列)用来检查包传输过程是否有损坏最后网卡会将包转为电信号,通过网线发送出去。
交换机的设计是将网络包原样转发到目的地。交换机工作在 MAC 层,也称为二层网络设备。
交换机的包接收操作
首先,电信号到达网线接口,交换机里的模块进行接收,接下来交换机里的模块将电信号转换为数字信号。
然后通过包末尾的 FCS
校验错误,如果没问题则放到缓冲区。这部分操作基本和计算机的网卡相同,但交换机的工作方式和网卡不同。
计算机的网卡本身具有 MAC 地址,并通过核对收到的包的接收方 MAC 地址判断是不是发给自己的,如果不是发给自己的则丢弃;相对地,交换机的端口不核对接收方 MAC 地址,而是直接接收所有的包并存放到缓冲区中。因此,和网卡不同,交换机的端口不具有 MAC 地址。
将包存入缓冲区后,接下来需要查询一下这个包的接收方 MAC 地址是否已经在 MAC 地址表中有记录了。
交换机的 MAC 地址表主要包含两个信息:
举个例子,如果收到的包的接收方 MAC 地址为 00-02-B3-1C-9C-F9
,则与图中表中的第 3 行匹配,根据端口列的信息,可知这个地址位于 3
号端口上,然后就可以通过交换电路将包发送到相应的端口了。
所以,交换机根据 MAC 地址表查找 MAC 地址,然后将信号发送到相应的端口。
当 MAC 地址表找不到指定的 MAC 地址会怎么样?
地址表中找不到指定的 MAC 地址。这可能是因为具有该地址的设备还没有向交换机发送过包,或者这个设备一段时间没有工作导致地址被从地址表中删除了。
这种情况下,交换机无法判断应该把包转发到哪个端口,只能将包转发到除了源端口之外的所有端口上,无论该设备连接在哪个端口上都能收到这个包。
这样做不会产生什么问题,因为以太网的设计本来就是将包发送到整个网络的,然后只有相应的接收者才接收包,而其他设备则会忽略这个包。
有人会说:“这样做会发送多余的包,会不会造成网络拥塞呢?”
其实完全不用过于担心,因为发送了包之后目标设备会作出响应,只要返回了响应包,交换机就可以将它的地址写入 MAC 地址表,下次也就不需要把包发到所有端口了。
局域网中每秒可以传输上千个包,多出一两个包并无大碍。
此外,如果接收方 MAC 地址是一个广播地址,那么交换机会将包发送到除源端口之外的所有端口。
以下两个属于广播地址:
FF:FF:FF:FF:FF:FF
255.255.255.255
路由器与交换机的区别
网络包经过交换机之后,现在到达了路由器,并在此被转发到下一个路由器或目标设备。
这一步转发的工作原理和交换机类似,也是通过查表判断包转发的目标。
不过在具体的操作过程上,路由器和交换机是有区别的。
路由器基本原理
路由器的端口具有 MAC 地址,因此它就能够成为以太网的发送方和接收方;同时还具有 IP 地址,从这个意义上来说,它和计算机的网卡是一样的。
当转发包时,首先路由器端口会接收发给自己的以太网包,然后路由表查询转发目标,再由相应的端口作为发送方将以太网包发送出去。
路由器的包接收操作
首先,电信号到达网线接口部分,路由器中的模块会将电信号转成数字信号,然后通过包末尾的 FCS
进行错误校验。
如果没问题则检查 MAC 头部中的接收方 MAC 地址,看看是不是发给自己的包,如果是就放到接收缓冲区中,否则就丢弃这个包。
总的来说,路由器的端口都具有 MAC 地址,只接收与自身地址匹配的包,遇到不匹配的包则直接丢弃。
查询路由表确定输出端口
完成包接收操作之后,路由器就会去掉包开头的 MAC 头部。
MAC 头部的作用就是将包送达路由器,其中的接收方 MAC 地址就是路由器端口的 MAC 地址。因此,当包到达路由器之后,MAC 头部的任务就完成了,于是 MAC 头部就会被丢弃。
接下来,路由器会根据 MAC 头部后方的 IP
头部中的内容进行包的转发操作。
转发操作分为几个阶段,首先是查询路由表判断转发目标。
具体的工作流程根据上图,举个例子。
假设地址为 10.10.1.101
的计算机要向地址为 192.168.1.100
的服务器发送一个包,这个包先到达图中的路由器。
判断转发目标的第一步,就是根据包的接收方 IP 地址查询路由表中的目标地址栏,以找到相匹配的记录。
路由匹配和前面讲的一样,每个条目的子网掩码和 192.168.1.100
IP 做 & 与运算后,得到的结果与对应条目的目标地址进行匹配,如果匹配就会作为候选转发目标,如果不匹配就继续与下个条目进行路由匹配。
如第二条目的子网掩码 255.255.255.0
与 192.168.1.100
IP 做 & 与运算后,得到结果是 192.168.1.0
,这与第二条目的目标地址 192.168.1.0
匹配,该第二条目记录就会被作为转发目标。
实在找不到匹配路由时,就会选择默认路由,路由表中子网掩码为 0.0.0.0
的记录表示「默认路由」。
路由器的发送操作
接下来就会进入包的发送操作。
首先,我们需要根据路由表的网关列判断对方的地址。
知道对方的 IP 地址之后,接下来需要通过 ARP
协议根据 IP 地址查询 MAC 地址,并将查询的结果作为接收方 MAC 地址。
路由器也有 ARP 缓存,因此首先会在 ARP 缓存中查询,如果找不到则发送 ARP 查询请求。
接下来是发送方 MAC 地址字段,这里填写输出端口的 MAC 地址。还有一个以太类型字段,填写 0800
(十六进制)表示 IP 协议。
网络包完成后,接下来会将其转换成电信号并通过端口发送出去。这一步的工作过程和计算机也是相同的。
发送出去的网络包会通过交换机到达下一个路由器。由于接收方 MAC 地址就是下一个路由器的地址,所以交换机会根据这一地址将包传输到下一个路由器。
接下来,下一个路由器会将包转发给再下一个路由器,经过层层转发之后,网络包就到达了最终的目的地。
不知你发现了没有,在网络包传输的过程中,源 IP 和目标 IP 始终是不会变的,一直变化的是 MAC 地址,因为需要 MAC 地址在以太网内进行两个设备之间的包传输。
数据包抵达服务器后,服务器会先扒开数据包的 MAC 头部,查看是否和服务器自己的 MAC 地址符合,符合就将包收起来。接着继续扒开数据包的 IP 头,发现 IP 地址符合,根据 IP 头中协议项,知道自己上层是 TCP 协议。于是,扒开 TCP 的头,里面有序列号,需要看一看这个序列包是不是我想要的,如果是就放入缓存中然后返回一个 ACK,如果不是就丢弃。TCP头部里面还有端口号, HTTP 的服务器正在监听这个端口号。于是,服务器自然就知道是 HTTP 进程想要这个包,于是就将包发给 HTTP 进程。服务器的 HTTP 进程看到,原来这个请求是要访问一个页面,于是就把这个网页封装在 HTTP 响应报文里。HTTP 响应报文也需要穿上 TCP、IP、MAC 头部,不过这次是源地址是服务器 IP 地址,目的地址是客户端 IP 地址。
穿好头部衣服后,从网卡出去,交由交换机转发到出城的路由器,路由器就把响应数据包发到了下一个路由器,就这样跳啊跳。最后跳到了客户端的城门把守的路由器,路由器扒开 IP 头部发现是要找城内的人,于是又把包发给了城内的交换机,再由交换机转发到客户端。客户端收到了服务器的响应数据包后,同样也非常的高兴,客户能拆快递了!于是,客户端开始扒皮,把收到的数据包的皮扒剩 HTTP 响应报文后,交给浏览器去渲染页面,一份特别的数据包快递,就这样显示出来了!
最后,客户端要离开了,向服务器发起了 TCP 四次挥手,至此双方的连接就断开了。