① 经验回放:样本关联性:1.序列决策的样本关联2.样本利用率低
②固定Q目标:非平稳性:1.算法非平稳2.样本利用率低
①model:定义有神经网络部分的网络结构
②algorithm:定义具体算法来更新Q网络
③agent:与环境交互,在交互过程中,把生成的数据据提供给algorithm去更新网络model
import parl
from parl import layers
import paddle.fluid as fluid
import copy
import numpy as np
import os
import gym
from parl.utils import logger
import paddle
paddle.enable_static()
LEARN_FREQ = 5 # 运行多少步以后学习一次
MEMORY_SIZE = 20000 # Memory 的大小
MEMORY_WARMUP_SIZE = 200 # Warmup 的大小
BATCH_SIZE = 32 # Batch 的大小
LEARNING_RATE = 0.001 # 学习率 alpha
GAMMA = 0.99 # reward 的 discount factor 衰减因子,一般取 0.9 到 0.999 不等
# Model 是一个神经网络模型,输入State输出对于所有 action 估计的Q Values(我们会使用2个神经网络模型,一个是 Current Q Network 一个是 Target Q Network)
# Algorithm 提供Loss Function和Optimization Algorithm,接收Agent的信息,用来优化神经网络
# Agent 直接跟环境来交互
class Model(parl.Model): # 这个 Model 是一个三层的 Multi-Layer Perceptron
def __init__(self, act_dim): # 在 Model 初始化的时候 传进来 action 的数量,这决定了最后一个 FC 输出的维度
hid1_size = 128
hid2_size = 128
self.fc1 = layers.fc(size=hid1_size, act='relu') # 第一个 FC,输出经过一个 ReLU
self.fc2 = layers.fc(size=hid2_size, act='relu')
self.fc3 = layers.fc(size=act_dim, act=None) # 最后一个 FC,输出不经过 Activation Function
def value(self, obs):
# 定义网络
# 输入state,输出所有action对应的Q,[Q(s,a1), Q(s,a2), Q(s,a3)...]
h1 = self.fc1(obs) # 这里把三层网络进行嵌套
h2 = self.fc2(h1)
Q = self.fc3(h2)
return Q
# from parl.algorithms import DQN # 也可以直接从parl库中导入DQN算法
class DQN(parl.Algorithm):
def __init__(self, model, act_dim=None, gamma=None, lr=None):
""" DQN algorithm
Args:
model (parl.Model): 定义Q函数的前向网络结构
act_dim (int): action空间的维度,即有几个action
gamma (float): reward的衰减因子
lr (float): learning rate 学习率.
"""
self.model = model # 我们用来获取 current Q 的模型
self.target_model = copy.deepcopy(model) # 创建一个target Q模型,创建的策略是直接从model复制给target
assert isinstance(act_dim, int)
assert isinstance(gamma, float)
assert isinstance(lr, float)
self.act_dim = act_dim # 把这些参数变成class properties
self.gamma = gamma
self.lr = lr
def predict(self, obs): # 使用 current Q network 获取所有action的 Q values
""" 使用self.model的value网络来获取 [Q(s,a1),Q(s,a2),...]
"""
return self.model.value(obs)
def learn(self, obs, action, reward, next_obs, terminal):
""" 使用DQN算法更新self.model的value网络
"""
# 从target_model中获取 max Q' 的值,用于计算target_Q
next_pred_value = self.target_model.value(next_obs) # 获取 target Q network 的所有action的 Q values
best_v = layers.reduce_max(next_pred_value, dim=1) # 获取最大的Q值
best_v.stop_gradient = True # 阻止梯度传递
terminal = layers.cast(terminal, dtype='float32') # 把terminal (是否终止)换为一个float32类型的数组,如果终止里面存储1,如果不终止里面存储0
target = reward + (1.0 - terminal) * self.gamma * best_v # 这里如果终止, 1-terminal 对应的元素为0,就不需要取best_v,不然还是要取best_v
pred_value = self.model.value(obs) # 获取Q预测 获取 current Q network 的所有action的 Q values
# 接着我们需要获取action对应的Q,这里使用了一个one-hot encoding来做乘法运算,相当于选中了Q values中action对应的那个值
# 将action转one-hot向量,比如:3 => [0,0,0,1,0]
action_onehot = layers.one_hot(action, self.act_dim)
action_onehot = layers.cast(action_onehot, dtype='float32')
# 下面一行是逐元素相乘,拿到action对应的 Q(s,a)
# 比如:pred_value = [[2.3, 5.7, 1.2, 3.9, 1.4]], action_onehot = [[0,0,0,1,0]]
# ==> pred_action_value = [[3.9]]
pred_action_value = layers.reduce_sum(
layers.elementwise_mul(action_onehot, pred_value), dim=1)
# 计算 Q(s,a) 与 target_Q的MSE均方差,得到loss
cost = layers.square_error_cost(pred_action_value, target)
cost = layers.reduce_mean(cost) # Loss 对于每一个样本都是一个数字,为了优化我们求平均数
optimizer = fluid.optimizer.Adam(learning_rate=self.lr) # 使用Adam优化器,Adam是一种优化算法
optimizer.minimize(cost)
return cost
def sync_target(self):
""" 把 self.model 的模型参数值同步到 self.target_model
"""
self.model.sync_weights_to(
self.target_model) # 这个函数主要是为了更新 Target Q,因为每一段时间我们就需要使用 Current Q Network 更新一次Target Q Network
class Agent(parl.Agent):
def __init__(self,
algorithm,
obs_dim,
act_dim,
e_greed=0.1,
e_greed_decrement=0):
assert isinstance(obs_dim, int)
assert isinstance(act_dim, int)
self.obs_dim = obs_dim
self.act_dim = act_dim
super(Agent, self).__init__(algorithm)
self.global_step = 0
self.update_target_steps = 200 # 每隔200个training steps再把model的参数复制到target_model中
self.e_greed = e_greed # 有一定概率随机选取动作,探索
self.e_greed_decrement = e_greed_decrement # 随着训练逐步收敛,探索的程度慢慢降低
def build_program(self):
self.pred_program = fluid.Program()
self.learn_program = fluid.Program()
with fluid.program_guard(self.pred_program): # 搭建计算图用于 预测动作,定义输入输出变量
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
self.value = self.alg.predict(obs)
with fluid.program_guard(self.learn_program): # 搭建计算图用于 更新Q网络,定义输入输出变量
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
action = layers.data(name='act', shape=[1], dtype='int32')
reward = layers.data(name='reward', shape=[], dtype='float32')
next_obs = layers.data(
name='next_obs', shape=[self.obs_dim], dtype='float32')
terminal = layers.data(name='terminal', shape=[], dtype='bool')
self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)
def sample(self, obs): # epsilon-greedy exploration
sample = np.random.rand() # 产生0~1之间的小数
if sample < self.e_greed:
act = np.random.randint(self.act_dim) # 探索:每个动作都有概率被选择
else:
act = self.predict(obs) # 选择最优动作
self.e_greed = max(
0.01, self.e_greed - self.e_greed_decrement) # 随着训练逐步收敛,探索的程度慢慢降低,这里最低还是要保持0.01的epsilon来探索
return act
def predict(self, obs): # 选择最优动作
obs = np.expand_dims(obs, axis=0)
pred_Q = self.fluid_executor.run(
self.pred_program,
feed={'obs': obs.astype('float32')},
fetch_list=[self.value])[0]
pred_Q = np.squeeze(pred_Q, axis=0)
act = np.argmax(pred_Q) # 选择Q最大的下标,即对应的动作
return act
def learn(self, obs, act, reward, next_obs, terminal):
# 每隔200个training steps同步一次model和target_model的参数
if self.global_step % self.update_target_steps == 0:
self.alg.sync_target()
self.global_step += 1
act = np.expand_dims(act, -1)
feed = {
'obs': obs.astype('float32'),
'act': act.astype('int32'),
'reward': reward,
'next_obs': next_obs.astype('float32'),
'terminal': terminal
}
cost = self.fluid_executor.run(
self.learn_program, feed=feed, fetch_list=[self.cost])[0] #feed传入数据,输出self.cost在build_program里 训练一次网络
return cost
#下面是Experience Replay使用的Memory,这也是一个class。
import random
import collections
import numpy as np
class ReplayMemory(object):
def __init__(self, max_size):
self.buffer = collections.deque(maxlen=max_size) # deque 是两头可进入取出的 queue, maxlen 指的是memory最大有多大
# 增加一条经验到经验池中
def append(self, exp):
self.buffer.append(exp) # 增加一个 experience, experience的结构是 (obs, action, reward, next_obs, done)
# 从经验池中选取N条经验出来
def sample(self, batch_size):
mini_batch = random.sample(self.buffer, batch_size) # 从buffer里面选取mini-batch
obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []
for experience in mini_batch: # 把每一个Experience里的每一个部分变成一个list,下面会转成numpy数组
s, a, r, s_p, done = experience
obs_batch.append(s)
action_batch.append(a)
reward_batch.append(r)
next_obs_batch.append(s_p)
done_batch.append(done)
return np.array(obs_batch).astype('float32'), \
np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')
def __len__(self):
return len(self.buffer) # 返回经验数量
#Training 和 Testing 函数
# 训练一个episode
def run_episode(env, agent, rpm):
total_reward = 0
obs = env.reset()
step = 0
while True:
step += 1
action = agent.sample(obs) # 采样动作,因为使用了epsilon-greedy exploration, 所有动作都有概率被尝试到
next_obs, reward, done, _ = env.step(action)
rpm.append((obs, action, reward, next_obs, done))
# train model
if (len(rpm) > MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0):
# 这里确定memory中有MEMORY_WARMUP_SIZE个Experience,如果没有就持续累积,有了才开始训练,这样让训练比较稳定。
# 这里还确保了不是每次得到Experience都训练,有LEARN_FREQ的间隔。
(batch_obs, batch_action, batch_reward, batch_next_obs,
batch_done) = rpm.sample(BATCH_SIZE) # 从replay memory中sample出BATCH_SIZE个Experience,并且分类放在每一个变量中
train_loss = agent.learn(batch_obs, batch_action, batch_reward,
batch_next_obs,
batch_done) # s,a,r,s',done
total_reward += reward
obs = next_obs
if done:
break
return total_reward
# 评估 agent, 跑 5 个episode,总reward求平均,因为环境有随机性,这样可以比较稳定
def evaluate(env, agent, render=False):
eval_reward = []
for i in range(5):
obs = env.reset()
episode_reward = 0
while True:
action = agent.predict(obs) # 预测动作,只选最优动作,这里没有随机性了
obs, reward, done, _ = env.step(action)
episode_reward += reward
if render:
env.render()
if done:
break
eval_reward.append(episode_reward)
return np.mean(eval_reward)
#运行代码
env = gym.make('CartPole-v0') # CartPole-v0: 预期最后一次评估总分 > 180(最大值是200)
action_dim = env.action_space.n # CartPole-v0: 2
obs_shape = env.observation_space.shape # CartPole-v0: (4,)
rpm = ReplayMemory(MEMORY_SIZE) # DQN的经验回放池
# 根据parl框架构建agent
model = Model(act_dim=action_dim)
algorithm = DQN(model, act_dim=action_dim, gamma=GAMMA, lr=LEARNING_RATE)
agent = Agent(
algorithm,
obs_dim=obs_shape[0],
act_dim=action_dim,
e_greed=0.1, # 有一定概率随机选取动作,探索
e_greed_decrement=1e-6) # 随着训练逐步收敛,探索的程度慢慢降低
# 加载模型
# save_path = './dqn_model.ckpt'
# agent.restore(save_path)
# 先往经验池里存一些数据,避免最开始训练的时候样本丰富度不够
while len(rpm) < MEMORY_WARMUP_SIZE:
run_episode(env, agent, rpm)
max_episode = 2000
# 开始训练
episode = 0
while episode < max_episode: # 训练max_episode个回合,test部分不计算入episode数量
# train part
for i in range(0, 50):
total_reward = run_episode(env, agent, rpm)
episode += 1
# test part
eval_reward = evaluate(env, agent, render=False) # render=True 查看显示效果
logger.info('episode:{} e_greed:{} test_reward:{}'.format(
episode, agent.e_greed, eval_reward))
# 训练结束,保存模型
save_path = './dqn_model.ckpt'
agent.save(save_path)
①
TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
1. Downgrade the protobuf package to 3.20.x or lower.
2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
按照提示重装protobuf,例如:
pip install protobuf==3.20.1
也可以用镜像加快下载速度
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple protobuf==3.20.0
②
AssertionError: In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and 'data()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode.
解决办法:
import paddle
paddle.enable_static()