继上篇讲到JS的一些常见编码加密方式后,本篇继续讲解一下编码加密方式。
HMAC全程:散列消息鉴别码,HMAC加密算法是一种安全的基于加密hash函数和共享秘钥的消息认证协议。实现原理是用公开函数和秘钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。
以下以HMAC的SHA256加密为例,实现SHA加密:
/**
*
* Secure Hash Algorithm (SHA256)
* http://www.webtoolkit.info/
*
* Original code by Angel Marin, Paul Johnston.
*
**/
function SHA256(s) {
const chrsz = 8
const hexcase = 0
function safe_add(x, y) {
const lsw = (x & 0xFFFF) + (y & 0xFFFF)
const msw = (x >> 16) + (y >> 16) + (lsw >> 16)
return (msw << 16) | (lsw & 0xFFFF)
}
function S(X, n) {
return (X >>> n) | (X << (32 - n))
}
function R(X, n) {
return (X >>> n)
}
function Ch(x, y, z) {
return ((x & y) ^ ((~x) & z))
}
function Maj(x, y, z) {
return ((x & y) ^ (x & z) ^ (y & z))
}
function Sigma0256(x) {
return (S(x, 2) ^ S(x, 13) ^ S(x, 22))
}
function Sigma1256(x) {
return (S(x, 6) ^ S(x, 11) ^ S(x, 25))
}
function Gamma0256(x) {
return (S(x, 7) ^ S(x, 18) ^ R(x, 3))
}
function Gamma1256(x) {
return (S(x, 17) ^ S(x, 19) ^ R(x, 10))
}
function core_sha256(m, l) {
const K = [0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0xFC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x6CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2]
const HASH = [0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19]
const W = new Array(64)
let a, b, c, d, e, f, g, h, i, j
let T1, T2
m[l >> 5] |= 0x80 << (24 - l % 32)
m[((l + 64 >> 9) << 4) + 15] = l
for (i = 0; i < m.length; i += 16) {
a = HASH[0]
b = HASH[1]
c = HASH[2]
d = HASH[3]
e = HASH[4]
f = HASH[5]
g = HASH[6]
h = HASH[7]
for (j = 0; j < 64; j++) {
if (j < 16) {
W[j] = m[j + i]
} else {
W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16])
}
T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j])
T2 = safe_add(Sigma0256(a), Maj(a, b, c))
h = g
g = f
f = e
e = safe_add(d, T1)
d = c
c = b
b = a
a = safe_add(T1, T2)
}
HASH[0] = safe_add(a, HASH[0])
HASH[1] = safe_add(b, HASH[1])
HASH[2] = safe_add(c, HASH[2])
HASH[3] = safe_add(d, HASH[3])
HASH[4] = safe_add(e, HASH[4])
HASH[5] = safe_add(f, HASH[5])
HASH[6] = safe_add(g, HASH[6])
HASH[7] = safe_add(h, HASH[7])
}
return HASH
}
function str2binb(str) {
const bin = []
const mask = (1 << chrsz) - 1
for (let i = 0; i < str.length * chrsz; i += chrsz) {
bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i % 32)
}
return bin
}
function Utf8Encode(string) {
string = string.replace(/\r\n/g, '\n')
let utfText = ''
for (let n = 0; n < string.length; n++) {
const c = string.charCodeAt(n)
if (c < 128) {
utfText += String.fromCharCode(c)
} else if ((c > 127) && (c < 2048)) {
utfText += String.fromCharCode((c >> 6) | 192)
utfText += String.fromCharCode((c & 63) | 128)
} else {
utfText += String.fromCharCode((c >> 12) | 224)
utfText += String.fromCharCode(((c >> 6) & 63) | 128)
utfText += String.fromCharCode((c & 63) | 128)
}
}
return utfText
}
function binb2hex(binarray) {
const hex_tab = hexcase ? '0123456789ABCDEF' : '0123456789abcdef'
let str = ''
for (let i = 0; i < binarray.length * 4; i++) {
str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) +
hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF)
}
return str
}
s = Utf8Encode(s)
return binb2hex(core_sha256(str2binb(s), s.length * chrsz))
}
输出如下:
const s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
// b56cc1f0ef1a616b11ed1a8a82239db6cad0d73e856d39fcedea8bb634ce5b1b
console.log(SHA256(s))
const s = 'Original code by Angel Marin, Paul Johnston.'
// 6668145198ff3d4b593e9b5111883f5ba99da2020f9e752a7b5e8003de33e6b3
console.log(SHA256(s))
DES 为数据加密标准,是一种使用密钥加密的算法。该加密算法是一种对称加密方式,其加密运算、解密运算需要使用的是同样的密钥(一组字符串)即可,DES是一个分组加密算法,典型的DES以64位为分组数据加密,加密和解密用的是同一个算法。它的秘钥长度是56位,而且可以任意改变
在JS逆向中,DES加密的搜索关键词有DES、mode、padding等
这里使用npm install crypto-js来使用DES加密,上述所有的加密方法都可以使用
npm install crypto-js
import CryptoJS from 'crypto-js';
const key = 'abcdefg';
const keyHex = CryptoJS.enc.Utf8.parse(key);
// 加密
const encryptDES = (message) => {
if (message) {
var encrypt = CryptoJS.DES.encrypt(message, keyHex, {
mode: CryptoJS.mode.ECB,
padding: CryptoJS.pad.Pkcs7
});
return encrypt.toString();
} else {
return '';
}
};
// 解密
const decryptDES = (ciphertext) => {
if (ciphertext) {
let decrypted = CryptoJS.DES.decrypt(ciphertext, keyHex, {
mode: CryptoJS.mode.ECB,
padding: CryptoJS.pad.Pkcs7
});
return decrypted.toString(CryptoJS.enc.Utf8);
} else {
return '';
}
};
export {
encryptDES,
decryptDES
}
AES加密标准又称为高级加密标准Rijndael加密法,是美国国家标准技术研究所NIST旨在取代DES的21世纪的加密标准。AES的基本要求是,采用对称分组密码体制,密钥长度可以为128、192或256位,分组长度128位,算法应易在各种硬件和软件上实现
AES填充模式常用的有三种,分别是NoPadding、ZeroPadding、Pkcs7,默认为Pkcs7
Js逆向时,AES加密的搜索关键词有AES、mode、padding等
加密代码:
let str = '****';// 需要加密的字符串
let keyStr = '****';// 密钥
let ivStr = '****';// iv偏移量
const key = CryptoJS.enc.Utf8.parse(keyStr); // 十六位十六进制数作为密钥
const iv = CryptoJS.enc.Utf8.parse(ivStr); // 十六位十六进制数作为密钥偏移量
let srcs = CryptoJS.enc.Utf8.parse(str);
let encrypted = CryptoJS.AES.encrypt(srcs, key, { iv: iv, mode: CryptoJS.mode.CBC, padding: CryptoJS.pad.Pkcs7 });
let appKey = encrypted.toString();//加密后的信息
RSA 加密算法是一种非对称加密算法。在公开密钥加密和电子商业中 RSA 被广泛使用。
RSA是非对称的,也就是用来加密的密钥和用来解密的密钥不是同一个。和DES一样的是,RSA也是分组加密算法,不同的是分组大小可以根据密钥的大小而改变。如果加密的数据不是分组大小的整数倍,则会根据具体的应用方式增加额外的填充位
RSA作为一种非对称的加密算法,其中很重要的一特点是当数据在网络中传输时,用来加密数据的密钥并不需要也和数据一起传送。因此,这就减少了密钥泄露的可能性。RSA在不允许加密方解密数据时也很有用,加密的一方使用一个密钥,称为公钥,解密的一方使用另一个密钥,称为私钥,私钥需要保持其私有性
import JSEncrypt from ‘jsencrypt‘
var publicKey = "-----BEGIN PUBLIC KEY-----\n" +
"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDTTt5d1LYtIxiW9ekKFBVonFOT\n" +
"XJHv4PY4xCDLPYbHWRKa/mRO7J11OJX+cR7bqzNq6uxH1W339wV\n" +
"lLP/x3Rl1RBh4prj0eYOEIsDVTvLTJONKazRtQrZ7yzSZ69o/3CQv\n" +
"ex6kb4js+9zho4U9fwIDAQAB\n" +
"-----END PUBLIC KEY-----";
let jse = new JSEncrypt();
jse.setPublicKey(publicKey);
var str = jse.encrypt(en);
console.log("加密数据:" + str)
https 是基于 http 和 SSL / TLS 实现的一个协议,它可以保证在网络上传输的数据都是加密的,从而保证数据安全