AcWing 383. 观光
和找最短路方案类似,只不过多了一次次短路,需要考虑在什么情况下需要更新次短路状态,这里用二维数组表示很妙,值得学习
#include<bits/stdc++.h>
using namespace std;
const int N = 1010, M = 20010;
int cse;
int h[N], e[M], w[M], ne[M], idx;
int S, T, n, m;
int dist[N][2], cnt[N][2]; //第一维记录点,第二维记录是最短路还是次短路
bool st[N][2]; //第一维记录点,第二维记录是最短路还是次短路
struct Ver{
int id, type, dist;
bool operator> (const Ver &W) const{
return dist > W.dist;
}
};
void add(int a, int b, int c){
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx ++ ;
}
int dijkstra(){
memset(st, 0, sizeof st);
memset(cnt, 0, sizeof cnt);
memset(dist, 0x3f, sizeof dist);
dist[S][0] = 0; //初始化距离值
cnt[S][0] = 1; //初始化方案数
priority_queue<Ver, vector<Ver>, greater<Ver>>heap; //大根堆
heap.push({S, 0, 0}); //第一个点入堆
while(heap.size()){
Ver v = heap.top();
heap.pop();
int ver = v.id, type = v.type, d = v.dist, ct = cnt[ver][type];
if(st[ver][type]) continue;
st[ver][type] = true;
for(int i = h[ver]; ~i; i = ne[i]){
int j = e[i];
if(dist[j][0] > d + w[i]){
//先更新次短路的状态,直接继承最短路的状态
dist[j][1] = dist[j][0];
cnt[j][1] = cnt[j][0];
heap.push({j, 1, dist[j][1]});
//更新最短路的状态
dist[j][0] = d + w[i];
cnt[j][0] = ct;
heap.push({j, 0, dist[j][0]});
}
else if(dist[j][0] == d + w[i]){
cnt[j][0] += ct;
}
else if(dist[j][1] > d + w[i]){ //找到新的次短路
dist[j][1] = d + w[i];
cnt[j][1] = ct;
heap.push({j, 1, dist[j][1]}); //找到新的点状态之后记得入队
}
else if(dist[j][1] == d + w[i]){
cnt[j][1] += ct;
}
}
}
int res = cnt[T][0];
if(dist[T][0] + 1 == dist[T][1]) res += cnt[T][1];
return res;
}
int main()
{
cin>>cse;
while(cse -- ){
cin>>n>>m;
memset(h, -1, sizeof h);
idx = 0;
while(m -- ){
int a, b, c;
cin>>a>>b>>c;
add(a, b, c);
}
cin>>S>>T;
cout<<dijkstra()<<endl;
}
return 0;
}