• Pytorch(二) —— 激活函数、损失函数及其梯度


    1.激活函数

    1.1 Sigmoid / Logistic

    δ ( x ) = 1 1 + e − x δ ′ ( x ) = δ ( 1 − δ ) \delta(x)=\frac{1}{1+e^{-x}}\\\delta'(x)=\delta(1-\delta) δ(x)=1+ex1δ(x)=δ(1δ)

    import matplotlib.pyplot as plt
    import torch.nn.functional as F
    x = torch.linspace(-10,10,1000)
    y = F.sigmoid(x)
    plt.plot(x,y)
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    在这里插入图片描述

    1.2 Tanh

    t a n h ( x ) = e x − e − x e x + e − x ∂ t a n h ( x ) ∂ x = 1 − t a n h 2 ( x ) tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}\\\frac{\partial tanh(x)}{\partial x}=1-tanh^2(x) tanh(x)=ex+exexexxtanh(x)=1tanh2(x)

    import matplotlib.pyplot as plt
    import torch.nn.functional as F
    x = torch.linspace(-10,10,1000)
    y = F.tanh(x)
    plt.plot(x,y)
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    在这里插入图片描述

    1.3 ReLU

    f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

    import matplotlib.pyplot as plt
    import torch.nn.functional as F
    x = torch.linspace(-10,10,1000)
    y = F.relu(x)
    plt.plot(x,y)
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    在这里插入图片描述

    1.4 Softmax

    p i = e a i ∑ k = 1 N e a k ∂ p i ∂ a j = { p i ( 1 − p j ) i = j − p i p j i ≠ j p_i=\frac{e^{a_i}}{\sum_{k=1}^N{e^{a_k}}}\\ \frac{\partial p_i}{\partial a_j}=\left\{

    pi(1pj)i=jpipjij
    \right. pi=k=1Neakeaiajpi={pi(1pj)pipji=ji=j

    import torch.nn.functional as F
    logits = torch.rand(10)
    prob = F.softmax(logits,dim=0)
    print(prob)
    
    • 1
    • 2
    • 3
    • 4
    tensor([0.1024, 0.0617, 0.1133, 0.1544, 0.1184, 0.0735, 0.0590, 0.1036, 0.0861,
            0.1275])
    
    • 1
    • 2

    2.损失函数

    2.1 MSE

    import torch.nn.functional as F
    x = torch.rand(100,64)
    w = torch.rand(64,1)
    y = torch.rand(100,1)
    mse = F.mse_loss(y,x@w)
    print(mse)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    tensor(238.5115)
    
    • 1

    2.2 CorssEntorpy

    import torch.nn.functional as F
    x = torch.rand(100,64)
    w = torch.rand(64,10)
    y = torch.randint(0,9,[100])
    entropy = F.cross_entropy(x@w,y)
    print(entropy)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    tensor(3.6413)
    
    • 1

    3. 求导和反向传播

    3.1 求导

    • Tensor.requires_grad_()
    • torch.autograd.grad()
    import torch.nn.functional as F
    import torch
    x = torch.rand(100,64)
    w = torch.rand(64,1)
    y = torch.rand(100,1)
    w.requires_grad_()
    mse = F.mse_loss(x@w,y)
    grads = torch.autograd.grad(mse,[w])
    print(grads[0].shape)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    torch.Size([64, 1])
    
    • 1

    3.2 反向传播

    • Tensor.backward()
    import torch.nn.functional as F
    import torch
    x = torch.rand(100,64)
    w = torch.rand(64,10)
    w.requires_grad_()
    y = torch.randint(0,9,[100,])
    entropy = F.cross_entropy(x@w,y)
    entropy.backward()
    w.grad.shape
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    torch.Size([64, 10])
    
    • 1

    by CyrusMay 2022 06 28

    人生 只是 须臾的刹那
    人间 只是 天地的夹缝
    ——————五月天(因为你 所以我)——————

  • 相关阅读:
    kubernetes教程-基本学习环境配置
    nRF52832 SDK15.3.0 基于ble_app_uart demo FreeRTOS移植
    软件开发遵循的一些原则
    CV每日论文--2024.6.25
    【深度学习】ONNX模型快速部署【入门】
    手动编译与安装Qt的子模块
    vue3 provide inject
    为什么我建议在复杂但是性能关键的表上所有查询都加上 force index
    java标注
    webpack内使用babel
  • 原文地址:https://blog.csdn.net/Cyrus_May/article/details/125500584