在此作业中,你将使用numpy实现卷积(CONV)和池化(POOL)层,包括正向传播和反向传播。
符号:
我们假设你已经熟悉numpy或者已经完成了之前的专业课程。那就开始吧!
让我们首先导入在作业过程中需要用到的包:
import numpy as np
import h5py
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)
你将实现构建卷积神经网络的需要的模块!要求实现的每个函数都有详细的说明,以帮助你完成所需的步骤:
本笔记本将要求你使用 numpy从头开始实现这些函数。在下一本笔记本中,你将学习使用TensorFlow来实现:
注意,对于每个正向函数,都有其对应的反向等式。因此,在正向传播模块的每一步中,都将一些参数存储在缓存中。这些参数用于在反向传播时计算梯度。
尽管编程框架可以方便使用卷积,但它们仍然是深度学习中最难理解的概念之一。卷积层将输入体积转换为不同大小的输出体积,如下所示。
在这一部分,你将构建卷积层的每一步。首先实现两个辅助函数:一个用于零填充,另一个用于计算卷积函数本身。
零填充将在图像的边界周围添加零:
图像(3个通道,RGB),填充2次。
填充的主要好处有:
练习:实现以下函数,该功能将使用零填充处理一个批次X的所有图像数据。使用np.pad()。注意,如果要填充维度为
(
5
,
5
,
5
,
5
,
5
)
(5,5,5,5,5)
(5,5,5,5,5)的数组"a",则第二维的填充为pad = 1
,第四维的填充为pad = 3
,其余为pad = 0
,你可以这样做:
a = np.pad(a, ((0,0), (1,1), (0,0), (3,3), (0,0)), 'constant', constant_values = (..,..))
def zero_pad(X, pad):
X_pad = np.pad(X, ((0,0), (pad, pad), (pad, pad), (0, 0)), 'constant', constant_values=0)
return X_pad
np.random.seed(1)
x = np.random.randn(4, 3, 3, 2)
x_pad = zero_pad(x, 2)
print ("x.shape =", x.shape)
print ("x_pad.shape =", x_pad.shape)
print ("x[1,1] =", x[1,1])
print ("x_pad[1,1] =", x_pad[1,1])
fig, axarr = plt.subplots(1, 2)
axarr[0].set_title('x')
axarr[0].imshow(x[0,:,:,0])
axarr[1].set_title('x_pad')
axarr[1].imshow(x_pad[0,:,:,0])
x.shape = (4, 3, 3, 2)
x_pad.shape = (4, 7, 7, 2)
x[1,1] = [[ 0.90085595 -0.68372786]
[-0.12289023 -0.93576943]
[-0.26788808 0.53035547]]
x_pad[1,1] = [[0. 0.]
[0. 0.]
[0. 0.]
[0. 0.]
[0. 0.]
[0. 0.]
[0. 0.]]
<matplotlib.image.AxesImage at 0x1cbdcdbbf60>
在这一部分中,实现卷积的单个步骤,其中将滤波器(卷积核)应用于输入的单个位置。这将用于构建卷积单元,该卷积单元:
图2:卷积操作
滤波器大小为 2 × 2 2 \times 2 2×2,步幅为1(步幅 = 每次滑动窗口的数量)
在计算机视觉应用中,左侧矩阵中的每个值都对应一个像素值,我们将 3 × 3 3 \times 3 3×3滤波器与图像进行卷积操作,首先将滤波器元素的值与原始矩阵相乘,然后将它们相加。在练习的第一步中,你将实现卷积的单个步骤,相对于仅对一个位置应用滤波器以获得单个实值输出。
在本笔记本的后面,你将应用此函数于输入的多个位置以实现完整的卷积运算。
练习:实现conv_single_step()。
def conv_single_step(a_slice_prev, W, b):
s = np.multiply(a_slice_prev, W) + b
Z = np.sum(s)
return Z
np.random.seed(1)
a_slice_prev = np.random.randn(4, 4, 3)
W = np.random.randn(4, 4, 3)
b = np.random.randn(1, 1, 1)
Z = conv_single_step(a_slice_prev, W, b)
print("Z =", Z)
Z = -23.16021220252078
在正向传递中,你将使用多个滤波器对输入进行卷积。每个“卷积”都会输出一个2D矩阵。然后,你将堆叠这些输出以获得3:
练习:实现以下函数,使用滤波器W卷积输入A_prev。此函数将上一层的激活输出(对于一批m个输入)A_prev作为输入,F表示滤波器/权重(W)和偏置向量(b),其中每个滤波器都有自己的(单个)偏置。最后,你还可以访问包含stride和padding的超参数字典。
提示:
a_slice_prev = a_prev[0:2,0:2,:]
使用定义的start/end索引定义a_slice_prev时将非常有用。
vert_start
,vert_end
,horiz_strat
和horiz_end
。该图可能有助于你找到如何在下面的代码中使用h,w,f和s定义每个角。图3:使用垂直和水平的start/end( 2 × 2 2 \times 2 2×2滤波器)定义切片
该图仅显示一个通道。
提醒:
卷积的输出维度与输入维度相关公式为:
n
H
=
⌊
n
H
p
r
e
v
−
f
+
2
×
p
a
d
s
t
r
i
d
e
⌋
+
1
n_H = \lfloor \frac{n_{H_{prev}} - f + 2 \times pad}{stride} \rfloor +1
nH=⌊stridenHprev−f+2×pad⌋+1
n
W
=
⌊
n
W
p
r
e
v
−
f
+
2
×
p
a
d
s
t
r
i
d
e
⌋
+
1
n_W = \lfloor \frac{n_{W_{prev}} - f + 2 \times pad}{stride} \rfloor +1
nW=⌊stridenWprev−f+2×pad⌋+1
n
C
=
number of filters used in the convolution
n_C = \text{number of filters used in the convolution}
nC=number of filters used in the convolution
对于此作业,我们不必考虑向量化,只使用for循环实现所有函数。
def conv_forward(A_prev, W, b, hparameters):
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape
(f, f, n_C_prev, n_C) = W.shape
stride = hparameters['stride']
pad = hparameters['pad']
n_H = 1 + int((n_H_prev + 2 * pad - f) / stride)
n_W = 1 + int((n_W_prev + 2 * pad - f) / stride)
Z = np.zeros((m, n_H, n_W, n_C))
A_prev_pad = zero_pad(A_prev, pad)
for i in range(m):
a_prev_pad = A_prev_pad[i]
for h in range(n_H):
for w in range(n_W):
for c in range(n_C):
# 找到当前“切片”的角
vert_start = h * stride
vert_end = vert_start + f
horiz_start = w * stride
horiz_end = horiz_start + f
# 使用边角来定义a_prev_pad的(3D)切片(参见单元格上方的提示)。
a_slice_prev = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :]
# 将(3D)切片与正确的滤波器W和偏置b进行卷积,得到一个输出神经元。
Z[i, h, w, c] = np.sum(np.multiply(a_slice_prev, W[:, :, :, c]) + b[:, :, :, c])
assert(Z.shape == (m, n_H, n_W, n_C))
cache = (A_prev, W, b, hparameters)
return Z, cache
np.random.seed(1)
A_prev = np.random.randn(10,4,4,3)
W = np.random.randn(2,2,3,8)
b = np.random.randn(1,1,1,8)
hparameters = {"pad" : 2,
"stride": 1}
Z, cache_conv = conv_forward(A_prev, W, b, hparameters)
print("Z's mean =", np.mean(Z))
print("cache_conv[0][1][2][3] =", cache_conv[0][1][2][3])
Z's mean = 0.15585932488906465
cache_conv[0][1][2][3] = [-0.20075807 0.18656139 0.41005165]
最后,CONV层还应包含一个激活,此情况下,我们将添加以下代码行:
# Convolve the window to get back one output neuron
Z[i, h, w, c] = ...
# Apply activation
A[i, h, w, c] = activation(Z[i, h, w, c])
池化(POOL)层减少了输入的高度和宽度。它有助于减少计算量,而且可以使特征检测器在输入中的位置保持不变。池化层有两种:
这些池化层没有用于反向传播的参数。但是,它们具有超参数,例如窗口大小 f f f,它指定了你要计算最大值或平均值的窗口的高度和宽度。
现在,你将在同一函数中实现最大池化和平均池化。
练习:实现池化层的正向传播。请遵循下述提示。
提示:
由于没有填充,因此将池化的输出维度绑定到输入维度的公式:
n
H
=
⌊
n
H
p
r
e
v
−
f
s
t
r
i
d
e
⌋
+
1
n_H = \lfloor \frac{n_{H_{prev}} - f}{stride} \rfloor +1
nH=⌊stridenHprev−f⌋+1
n
W
=
⌊
n
W
p
r
e
v
−
f
s
t
r
i
d
e
⌋
+
1
n_W = \lfloor \frac{n_{W_{prev}} - f}{stride} \rfloor +1
nW=⌊stridenWprev−f⌋+1
n
C
=
n
C
p
r
e
v
n_C = n_{C_{prev}}
nC=nCprev
def pool_forward(A_prev, hparameters, mode = "max"):
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape
f = hparameters["f"]
stride = hparameters["stride"]
n_H = int(1 + (n_H_prev - f) / stride)
n_W = int(1 + (n_W_prev - f) / stride)
n_C = n_C_prev
A = np.zeros((m, n_H, n_W, n_C))
for i in range(m): # 样例数
for h in range(n_H): # 在输出量的纵轴上循环
for w in range(n_W): # 在输出量的横轴上循环
for c in range(n_C):
# Step1:找切片
vert_start = h * stride
vert_end = vert_start + f
horiz_start = w * stride
horiz_end = horiz_start + f
# Step2:使用角来定义A_prev的第i个训练示例的当前切片,通道c。
a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c]
# Step3:计算片上的池操作。使用if语句区分模式。使用np.max / np.mean。
if mode == "max":
A[i, h, w, c] = np.max(a_prev_slice)
elif mode == "average":
A[i, h, w, c] = np.mean(a_prev_slice)
cache = (A_prev, hparameters)
assert(A.shape == (m, n_H, n_W, n_C))
return A, cache
np.random.seed(1)
A_prev = np.random.randn(2, 4, 4, 3)
hparameters = {"stride" : 1, "f": 4}
A, cache = pool_forward(A_prev, hparameters)
print("mode = max")
print("A =", A)
print()
A, cache = pool_forward(A_prev, hparameters, mode = "average")
print("mode = average")
print("A =", A)
mode = max
A = [[[[1.74481176 1.6924546 2.10025514]]]
[[[1.19891788 1.51981682 2.18557541]]]]
mode = average
A = [[[[-0.09498456 0.11180064 -0.14263511]]]
[[[-0.09525108 0.28325018 0.33035185]]]]
在深度学习框架中,你只需要实现正向传播,该框架就可以处理反向传播,因此大多数深度学习工程师不需要理会反向传播的细节。卷积网络的反向传播很复杂。但是,如果你愿意,可以在笔记本的此可选部分中进行操作,以了解卷积网络中反向传播的原理。
在较早的课程中,当你实现了一个简单的(全连接)神经网络时,你就使用了反向传播来计算损失的导数以更新参数。类似地,在卷积神经网络中,你可以计算损失的导数以更新参数。反向传播方程并非不重要,即使我们在课程中并未导出它们,但下面简要介绍了过程。
让我们从实现CONV层的反向传播开始。
这是用于针对特定滤波器
W
c
W_c
Wc的损失和给定训练示例计算
d
A
dA
dA的公式:
d
A
+
=
∑
h
=
0
n
H
∑
w
=
0
n
W
W
c
×
d
Z
h
w
(1)
dA += \sum _{h=0} ^{n_H} \sum_{w=0} ^{n_W} W_c \times dZ_{hw} \tag{1}
dA+=h=0∑nHw=0∑nWWc×dZhw(1)
其中 W c W_c Wc是一个滤波器, d Z h w dZ_{hw} dZhw是一个标量,相对于第h行和第w列的conv层Z的输出的梯度的损失。请注意,每次更新dA时,我们都会将相同的滤波器 W c W_c Wc乘以不同的 d Z dZ dZ。我们这样做主要是因为在计算正向传播时,每个滤波器都由不同的a_slice进行点乘和求和。因此,在为dA计算backprop时,我们只是加上所有a_slices的梯度。
在适当的for循环内,此公式转换为:
da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]
这是用于针对损失计算
d
W
c
dW_c
dWc的公式(
d
W
c
dW_c
dWc是一个滤波器的导数):
d
W
c
+
=
∑
h
=
0
n
H
∑
w
=
0
n
W
a
s
l
i
c
e
×
d
Z
h
w
(2)
dW_c += \sum _{h=0} ^{n_H} \sum_{w=0} ^ {n_W} a_{slice} \times dZ_{hw} \tag{2}
dWc+=h=0∑nHw=0∑nWaslice×dZhw(2)
其中
a
s
l
i
c
e
a_{slice}
aslice对应于用于生成激活
Z
i
j
Z_{ij}
Zij的切片,最终我们得到
W
W
W相对于该切片的梯度。由于它是相同的
W
W
W,因此我们将所有这些梯度加起来即可得到
d
W
dW
dW。
在适当的for循环内,此公式转换为:
dW[:,:,:,c] += a_slice * dZ[i, h, w, c]
这是用于某个滤波器
W
c
W_c
Wc的损失计算
d
b
db
db的公式:
d
b
=
∑
h
∑
w
d
Z
h
w
(3)
db = \sum_h \sum_w dZ_{hw} \tag{3}
db=h∑w∑dZhw(3)
正如你先前在基本神经网络中所见,db是通过将
d
Z
dZ
dZ相加得出的。在这种情况下,你只需要对转换输出(Z)相对于损失的所有梯度求和。
在适当的for循环内,此公式转换为:
db[:,:,:,c] += dZ[i, h, w, c]
练习:在下面实现conv_backward
函数。你应该总结所有训练数据,滤波器,高度和宽度。然后,你应该使用上面的公式1、2和3计算导数。
def conv_backward(dZ, cache):
"""
Implement the backward propagation for a convolution function
Arguments:
dZ -- gradient of the cost with respect to the output of the conv layer (Z), numpy array of shape (m, n_H, n_W, n_C)
cache -- cache of values needed for the conv_backward(), output of conv_forward()
Returns:
dA_prev -- gradient of the cost with respect to the input of the conv layer (A_prev),
numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
dW -- gradient of the cost with respect to the weights of the conv layer (W)
numpy array of shape (f, f, n_C_prev, n_C)
db -- gradient of the cost with respect to the biases of the conv layer (b)
numpy array of shape (1, 1, 1, n_C)
"""
### START CODE HERE ###
# Retrieve information from "cache"
(A_prev, W, b, hparameters) = cache
# Retrieve dimensions from A_prev's shape
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape
# Retrieve dimensions from W's shape
(f, f, n_C_prev, n_C) = W.shape
# Retrieve information from "hparameters"
stride = hparameters['stride']
pad = hparameters['pad']
# Retrieve dimensions from dZ's shape
(m, n_H, n_W, n_C) = dZ.shape
# Initialize dA_prev, dW, db with the correct shapes
dA_prev = np.zeros((m, n_H_prev, n_W_prev, n_C_prev))
dW = np.zeros((f, f, n_C_prev, n_C))
db = np.zeros((1, 1, 1, n_C))
# Pad A_prev and dA_prev
A_prev_pad = zero_pad(A_prev, pad)
dA_prev_pad = zero_pad(dA_prev, pad)
for i in range(m): # loop over the training examples
# select ith training example from A_prev_pad and dA_prev_pad
a_prev_pad = A_prev_pad[i]
da_prev_pad = dA_prev_pad[i]
for h in range(n_H): # loop over vertical axis of the output volume
for w in range(n_W): # loop over horizontal axis of the output volume
for c in range(n_C): # loop over the channels of the output volume
# Find the corners of the current "slice"
vert_start = h * stride
vert_end = vert_start + f
horiz_start = w * stride
horiz_end = horiz_start + f
# Use the corners to define the slice from a_prev_pad
a_slice = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :]
# Update gradients for the window and the filter's parameters using the code formulas given above
da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]
dW[:,:,:,c] += a_slice * dZ[i, h, w, c]
db[:,:,:,c] += dZ[i, h, w, c]
# Set the ith training example's dA_prev to the unpaded da_prev_pad (Hint: use X[pad:-pad, pad:-pad, :])
dA_prev[i, :, :, :] = dA_prev_pad[i, pad:-pad, pad:-pad, :]
### END CODE HERE ###
# Making sure your output shape is correct
assert(dA_prev.shape == (m, n_H_prev, n_W_prev, n_C_prev))
return dA_prev, dW, db
np.random.seed(1)
dA, dW, db = conv_backward(Z, cache_conv)
print("dA_mean =", np.mean(dA))
print("dW_mean =", np.mean(dW))
print("db_mean =", np.mean(db))
dA_mean = 9.608990675868995
dW_mean = 10.581741275547566
db_mean = 76.37106919563735
接下来,让我们从MAX-POOL层开始实现池化层的反向传播。即使池化层没有用于反向传播更新的参数,你仍需要通过池化层对梯度进行反向传播,以便计算池化层之前的层的梯度。
在进入池化层的反向传播之前,首先构建一个名为create_mask_from_window()
的辅助函数,该函数将执行以下操作:
X
=
[
1
3
4
2
]
→
M
=
[
0
0
1
0
]
(4)
X =
此函数创建一个“掩码”矩阵,该矩阵追踪矩阵的最大值。True(1)表示最大值在X中的位置,其他条目为False(0)。稍后你将看到,平均池的反向传播与此相似,但是使用了不同的掩码。
练习:实现create_mask_from_window()
。此函数将有助于反向池化。
提示:
A[i,j] = True if X[i,j] = x
A[i,j] = False if X[i,j] != x
def create_mask_from_window(x):
"""
Creates a mask from an input matrix x, to identify the max entry of x.
Arguments:
x -- Array of shape (f, f)
Returns:
mask -- Array of the same shape as window, contains a True at the position corresponding to the max entry of x.
"""
### START CODE HERE ### (≈1 line)
mask = (x == np.max(x))
### END CODE HERE ###
return mask
np.random.seed(1)
x = np.random.randn(2,3)
mask = create_mask_from_window(x)
print('x = ', x)
print("mask = ", mask)
x = [[ 1.62434536 -0.61175641 -0.52817175]
[-1.07296862 0.86540763 -2.3015387 ]]
mask = [[ True False False]
[False False False]]
为什么我们要追踪最大值的位置?因为这是最终影响输出的输入值,也影响了损失。 反向传播算法是根据损失计算梯度的,因此影响最终损失的任何事物都应具有非零的梯度。因此,反向传播将使梯度“传播”回影响损失的特定输入值。
在最大池化中,对于每个输入窗口,输出上的所有“影响”都来自单个输入值,即最大值。在平均池化中,输入窗口的每个元素对输出的影响均相同 因此,要实现反向传播,你现在将实现一个反映此点的辅助函数。
例如,如果我们使用2x2滤波器在正向传播中进行平均池化,那么用于反向传播的掩码将如下所示:
d
Z
=
1
→
d
Z
=
[
1
/
4
1
/
4
1
/
4
1
/
4
]
(5)
dZ = 1 \quad \rightarrow \quad dZ =
这意味着矩阵
d
Z
dZ
dZ中的每个位置对输出的贡献均等,因为在正向传播中,我们取平均值。
练习:实现以下函数,以通过维度矩阵平均分配值dz。 提示
def distribute_value(dz, shape):
"""
Distributes the input value in the matrix of dimension shape
Arguments:
dz -- input scalar
shape -- the shape (n_H, n_W) of the output matrix for which we want to distribute the value of dz
Returns:
a -- Array of size (n_H, n_W) for which we distributed the value of dz
"""
### START CODE HERE ###
# Retrieve dimensions from shape (≈1 line)
(n_H, n_W) = shape
# Compute the value to distribute on the matrix (≈1 line)
average = dz / (n_H * n_W)
# Create a matrix where every entry is the "average" value (≈1 line)
a = np.ones(shape) * average
### END CODE HERE ###
return a
a = distribute_value(2, (2,2))
print('distributed value =', a)
distributed value = [[0.5 0.5]
[0.5 0.5]]
现在,你准备好了在池化层上计算反向传播所需的一切。
练习:在两种模式(“max
"和"average
”)都实现“pool_backward”功能。再次使用4个for循环(遍历训练数据,高度,宽度和通道)。使用 if/elif
语句来查看模式是否等于’max
’或’average
’。如果等于’average
’ ,则应使用上面实现的distribute_value()
函数创建与 a_slice
维度相同的矩阵。此外,模式等于’max
’时,你将使用 create_mask_from_window()
创建一个掩码,并将其乘以相应的dZ值。
def pool_backward(dA, cache, mode = "max"):
"""
Implements the backward pass of the pooling layer
Arguments:
dA -- gradient of cost with respect to the output of the pooling layer, same shape as A
cache -- cache output from the forward pass of the pooling layer, contains the layer's input and hparameters
mode -- the pooling mode you would like to use, defined as a string ("max" or "average")
Returns:
dA_prev -- gradient of cost with respect to the input of the pooling layer, same shape as A_prev
"""
### START CODE HERE ###
# Retrieve information from cache (≈1 line)
(A_prev, hparameters) = cache
# Retrieve hyperparameters from "hparameters" (≈2 lines)
stride = hparameters['stride']
f = hparameters['f']
# Retrieve dimensions from A_prev's shape and dA's shape (≈2 lines)
m, n_H_prev, n_W_prev, n_C_prev = A_prev.shape
m, n_H, n_W, n_C = dA.shape
# Initialize dA_prev with zeros (≈1 line)
dA_prev = np.zeros_like(A_prev)
for i in range(m): # loop over the training examples
# select training example from A_prev (≈1 line)
a_prev = A_prev[i]
for h in range(n_H): # loop on the vertical axis
for w in range(n_W): # loop on the horizontal axis
for c in range(n_C): # loop over the channels (depth)
# Find the corners of the current "slice" (≈4 lines)
vert_start = h * stride
vert_end = vert_start + f
horiz_start = w * stride
horiz_end = horiz_start + f
# Compute the backward propagation in both modes.
if mode == "max":
# Use the corners and "c" to define the current slice from a_prev (≈1 line)
a_prev_slice = a_prev[vert_start:vert_end, horiz_start:horiz_end, c]
# Create the mask from a_prev_slice (≈1 line)
mask = create_mask_from_window(a_prev_slice)
# Set dA_prev to be dA_prev + (the mask multiplied by the correct entry of dA) (≈1 line)
dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c] += mask * dA[i, vert_start, horiz_start, c]
elif mode == "average":
# Get the value a from dA (≈1 line)
da = dA[i, vert_start, horiz_start, c]
# Define the shape of the filter as fxf (≈1 line)
shape = (f, f)
# Distribute it to get the correct slice of dA_prev. i.e. Add the distributed value of da. (≈1 line)
dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c] += distribute_value(da, shape)
### END CODE ###
# Making sure your output shape is correct
assert(dA_prev.shape == A_prev.shape)
return dA_prev
np.random.seed(1)
A_prev = np.random.randn(5, 5, 3, 2)
hparameters = {"stride" : 1, "f": 2}
A, cache = pool_forward(A_prev, hparameters)
dA = np.random.randn(5, 4, 2, 2)
dA_prev = pool_backward(dA, cache, mode = "max")
print("mode = max")
print('mean of dA = ', np.mean(dA))
print('dA_prev[1,1] = ', dA_prev[1,1])
print()
dA_prev = pool_backward(dA, cache, mode = "average")
print("mode = average")
print('mean of dA = ', np.mean(dA))
print('dA_prev[1,1] = ', dA_prev[1,1])
mode = max
mean of dA = 0.14571390272918056
dA_prev[1,1] = [[ 0. 0. ]
[ 5.05844394 -1.68282702]
[ 0. 0. ]]
mode = average
mean of dA = 0.14571390272918056
dA_prev[1,1] = [[ 0.08485462 0.2787552 ]
[ 1.26461098 -0.25749373]
[ 1.17975636 -0.53624893]]
= np.random.randn(5, 4, 2, 2)
dA_prev = pool_backward(dA, cache, mode = “max”)
print(“mode = max”)
print('mean of dA = ', np.mean(dA))
print('dA_prev[1,1] = ', dA_prev[1,1])
print()
dA_prev = pool_backward(dA, cache, mode = “average”)
print(“mode = average”)
print('mean of dA = ', np.mean(dA))
print('dA_prev[1,1] = ', dA_prev[1,1])
mode = max
mean of dA = 0.14571390272918056
dA_prev[1,1] = [[ 0. 0. ]
[ 5.05844394 -1.68282702]
[ 0. 0. ]]
mode = average
mean of dA = 0.14571390272918056
dA_prev[1,1] = [[ 0.08485462 0.2787552 ]
[ 1.26461098 -0.25749373]
[ 1.17975636 -0.53624893]]