bilinear pooling主要用于特征融合,对于从同一个样本提取出来的特征x和特征y,通过bilinear pooling得到两个特征融合后的向量,进而用来分类。
如果特征x和特征y来自两个特征提取器,则被称为多模双线性池化(MBP,Multimodal Bilinear Pooling);
如果特征x=特征y,则被称为同源双线性池化(HBP,Homogeneous Bilinear Pooling)或者二阶池化(Second-order Pooling)。
原始的Bilinear Pooling存在融合后的特征维数过高的问题,融合后的特征维数=特征x和特征y的维数之积。原作者尝试了PCA降维,但效果并不理想。
《Factorized bilinear models for image recognition》是ICCV2017的文章,虽然本文也是针对HBP的研究,但成功地把bilinear model与bilinear pooling联系起来。