- 贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法
- 贪心算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果
假设存在下面需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有的地区都可以接收到信号
思路分析:
使用贪心算法,效率高:
- 目前并没有算法可以快速计算得到准备的值, 使用贪心算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合:
- 遍历所有的广播电台, 找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
- 将这个电台加入到一个集合中(比如ArrayList), 想办法把该电台覆盖的地区在下次比较时去掉。
- 重复第1步直到覆盖了全部的地区
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
public class GreedyAlgorithm {
public static void main(String[] args) {
//创建广播电台,放入到Map
HashMap<String,HashSet<String>> broadcasts = new HashMap<String, HashSet<String>>();
//将各个电台放入到broadcasts
HashSet<String> hashSet1 = new HashSet<String>();
hashSet1.add("北京");
hashSet1.add("上海");
hashSet1.add("天津");
HashSet<String> hashSet2 = new HashSet<String>();
hashSet2.add("广州");
hashSet2.add("北京");
hashSet2.add("深圳");
HashSet<String> hashSet3 = new HashSet<String>();
hashSet3.add("成都");
hashSet3.add("上海");
hashSet3.add("杭州");
HashSet<String> hashSet4 = new HashSet<String>();
hashSet4.add("上海");
hashSet4.add("天津");
HashSet<String> hashSet5 = new HashSet<String>();
hashSet5.add("杭州");
hashSet5.add("大连");
//加入到map
broadcasts.put("K1", hashSet1);
broadcasts.put("K2", hashSet2);
broadcasts.put("K3", hashSet3);
broadcasts.put("K4", hashSet4);
broadcasts.put("K5", hashSet5);
//allAreas 存放所有的地区
HashSet<String> allAreas = new HashSet<String>();
allAreas.add("北京");
allAreas.add("上海");
allAreas.add("天津");
allAreas.add("广州");
allAreas.add("深圳");
allAreas.add("成都");
allAreas.add("杭州");
allAreas.add("大连");
//创建ArrayList, 存放选择的电台集合
ArrayList<String> selects = new ArrayList<String>();
//定义一个临时的集合, 在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
HashSet<String> tempSet = new HashSet<String>();
//定义给maxKey , 保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的key
//如果maxKey 不为null , 则会加入到 selects
String maxKey = null;
while(allAreas.size() != 0) { // 如果allAreas 不为0, 则表示还没有覆盖到所有的地区
//每进行一次while,需要
maxKey = null;
//遍历 broadcasts, 取出对应key
for(String key : broadcasts.keySet()) {
//每进行一次for
tempSet.clear();
//当前这个key能够覆盖的地区
HashSet<String> areas = broadcasts.get(key);
tempSet.addAll(areas);
//求出tempSet 和 allAreas 集合的交集, 交集会赋给 tempSet
tempSet.retainAll(allAreas);
//如果当前这个集合包含的未覆盖地区的数量,比maxKey指向的集合地区还多
//就需要重置maxKey
// tempSet.size() >broadcasts.get(maxKey).size()) 体现出贪心算法的特点,每次都选择最优的
if(tempSet.size() > 0 &&
(maxKey == null || tempSet.size() >broadcasts.get(maxKey).size())){
maxKey = key;
}
}
//maxKey != null, 就应该将maxKey 加入selects
if(maxKey != null) {
selects.add(maxKey);
//将maxKey指向的广播电台覆盖的地区,从 allAreas 去掉
allAreas.removeAll(broadcasts.get(maxKey));
}
}
System.out.println("得到的选择结果是" + selects);//[K1,K2,K3,K5]
}
}
- 贪心算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果
- 比如上题的算法选出的是K1, K2, K3, K5,符合覆盖了全部的地区
- 但是我们发现 K2, K3,K4,K5 也可以覆盖全部地区,如果K4 的使用成本低于K1,那么我们上题的 K1, K2, K3, K5 虽然是满足条件,但是并不是最优的.