• June 27 talk SofiE


    June 27 talk SofiE

    Y z = ( z t ′ , h t ′ , x t ′ ) ′ Y_z=(z_t',h_t',x_t')' Yz=(zt,ht,xt)

    A 0 Y t = a + ∑ l = 1 A_0Y_t=a+\sum_{l=1} A0Yt=a+l=1

    A 0 − 1 = c h o l ( ∑ ^ ) ∗ Q A_0^{-1}=chol(\widehat{\sum})*Q A01=chol( )Q

    I R F s IRFs IRFs

    A U T , B E L , F R A , G E R , I T A , N L D , P R T , S P N AUT, BEL, FRA, GER, ITA, NLD, PRT, SPN AUT,BEL,FRA,GER,ITA,NLD,PRT,SPN

    V A R X m o d e l s VARX models VARXmodels

    7 G D P 7 GDP 7GDP

    • GDP

    • VARX models for each countries

      • Endogenous
        • 7 country specic variables
    • macroeconomic variables

    • Asset purchase schock

    • Asset purchase shock

    • CB information shock

      • Governemnt bond
      • Stock prices
      • Value groth
      • Corporate debt
      • Sovereign stress index

    Bond market

    • Stock market
    • MSCI
    • Value growth

    image-20220627162525459
    F t , T ( S ) = S t e r ( T − t ) = S t e r ( T − t ) − F V t , T ( D i v i d e n d s ) = S t e ( r − δ ) ( T − t ) F_{t,T}(S)=S_te^{r(T-t)}=S_te^{r(T-t)}-FV_{t,T}(Dividends)=S_te^{(r-\delta)(T-t) } Ft,T(S)=Ster(Tt)=Ster(Tt)FVt,T(Dividends)=Ste(rδ)(Tt)

    F t , T ( S ) = S t e r ( T − t ) = S t e T − t − F V t , T ( D i v i d e n d s ) F_{t,T}(S)=S_te^{r(T-t)}=S_te^{T-t}-FV_{t,T}(Dividends) Ft,T(S)=Ster(Tt)=SteTtFVt,T(Dividends)

    S t e − δ ( T − t ) S_t e^{-\delta (T-t)} Steδ(Tt)

    c ( S t , K , t , T ) − p ( S t , K , t , T ) = F t , T P ( S ) − K e − r ( T − t ) c(S_t,K,t,T)-p(S_t,K,t,T)=F_{t,T}^{P}(S)-Ke^{-r(T-t)} c(St,K,t,T)p(St,K,t,T)=Ft,TP(S)Ker(Tt)

    0 ≤ c ( K 1 ) − c ( K 2 ) ≤ ( K 2 − K 1 ) e − r T 0\le c(K_1)-c(K_2) \le (K_2- K_1)e^{-rT} 0c(K1)c(K2)(K2K1)erT

    0 ≤ p ( K 2 ) − p ( K 1 ) ≤ ( K 2 − K 1 ) e − r T 0 \le p(K_2)-p(K_1) \le (K_2-K_1)e^{-rT} 0p(K2)p(K1)(K2K1)erT

    c ( K 1 ) − c ( K 2 ) K 2 − k 1 ≥ c ( K 2 ) − c ( K 3 ) K 3 − k 2 \frac{c(K_1)-c(K_2)}{K_2-k_1} \ge \frac{c(K_2)-c(K_3)}{K_3-k_2} K2k1c(K1)c(K2)K3k2c(K2)c(K3)

    K 2 = λ K 1 + ( 1 − λ ) K 3 K_2=\lambda K_1+(1-\lambda)K_3 K2=λK1+(1λ)K3

    λ = K 3 − K 2 K 3 − K 1 \lambda = \frac{K_3-K_2}{K_3-K_1} λ=K3K1K3K2

    P L L F λ = L L F − λ ∑ j = 1 j ( w j ^ ∣ θ j ∣ ) PLLF_\lambda = LLF-\lambda \sum_{j=1}^{j}(\widehat{w_j}|\theta_j|) PLLFλ=LLFλj=1j(wj θj)

    G I C λ = 1 N { 2 [ L L F ( ^ } GIC_\lambda = \frac{1}{N}\{2[LLF(\hat{} \} GICλ=N1{2[LLF(^}

    ϕ \phi ϕ

  • 相关阅读:
    小程序版九宫格抽奖
    Spring Boot 项目部署方案!打包 + Shell 脚本部署详解
    美团一面:说说synchronized的实现原理?问麻了。。。。
    C++ set / multiset容器
    [附源码]java毕业设计基于web的建筑合同管理系统
    TiDB混合部署拓扑
    聊聊自动化测试想法
    【云原生】Kubernetes资源配额+HPA+节点选择器+亲和性+污点
    利用Gitlab进行代码的协作开发
    图的应用之最小生成树
  • 原文地址:https://blog.csdn.net/Dequn_Teng_CSDN/article/details/125494229