Y z = ( z t ′ , h t ′ , x t ′ ) ′ Y_z=(z_t',h_t',x_t')' Yz=(zt′,ht′,xt′)′
A 0 Y t = a + ∑ l = 1 A_0Y_t=a+\sum_{l=1} A0Yt=a+l=1∑
A 0 − 1 = c h o l ( ∑ ^ ) ∗ Q A_0^{-1}=chol(\widehat{\sum})*Q A0−1=chol(∑ )∗Q
I R F s IRFs IRFs
A U T , B E L , F R A , G E R , I T A , N L D , P R T , S P N AUT, BEL, FRA, GER, ITA, NLD, PRT, SPN AUT,BEL,FRA,GER,ITA,NLD,PRT,SPN
V A R X m o d e l s VARX models VARXmodels
7 G D P 7 GDP 7GDP
GDP
VARX models for each countries
macroeconomic variables
Asset purchase schock
Asset purchase shock
CB information shock
F
t
,
T
(
S
)
=
S
t
e
r
(
T
−
t
)
=
S
t
e
r
(
T
−
t
)
−
F
V
t
,
T
(
D
i
v
i
d
e
n
d
s
)
=
S
t
e
(
r
−
δ
)
(
T
−
t
)
F_{t,T}(S)=S_te^{r(T-t)}=S_te^{r(T-t)}-FV_{t,T}(Dividends)=S_te^{(r-\delta)(T-t) }
Ft,T(S)=Ster(T−t)=Ster(T−t)−FVt,T(Dividends)=Ste(r−δ)(T−t)
F t , T ( S ) = S t e r ( T − t ) = S t e T − t − F V t , T ( D i v i d e n d s ) F_{t,T}(S)=S_te^{r(T-t)}=S_te^{T-t}-FV_{t,T}(Dividends) Ft,T(S)=Ster(T−t)=SteT−t−FVt,T(Dividends)
S t e − δ ( T − t ) S_t e^{-\delta (T-t)} Ste−δ(T−t)
c ( S t , K , t , T ) − p ( S t , K , t , T ) = F t , T P ( S ) − K e − r ( T − t ) c(S_t,K,t,T)-p(S_t,K,t,T)=F_{t,T}^{P}(S)-Ke^{-r(T-t)} c(St,K,t,T)−p(St,K,t,T)=Ft,TP(S)−Ke−r(T−t)
0 ≤ c ( K 1 ) − c ( K 2 ) ≤ ( K 2 − K 1 ) e − r T 0\le c(K_1)-c(K_2) \le (K_2- K_1)e^{-rT} 0≤c(K1)−c(K2)≤(K2−K1)e−rT
0 ≤ p ( K 2 ) − p ( K 1 ) ≤ ( K 2 − K 1 ) e − r T 0 \le p(K_2)-p(K_1) \le (K_2-K_1)e^{-rT} 0≤p(K2)−p(K1)≤(K2−K1)e−rT
c ( K 1 ) − c ( K 2 ) K 2 − k 1 ≥ c ( K 2 ) − c ( K 3 ) K 3 − k 2 \frac{c(K_1)-c(K_2)}{K_2-k_1} \ge \frac{c(K_2)-c(K_3)}{K_3-k_2} K2−k1c(K1)−c(K2)≥K3−k2c(K2)−c(K3)
K 2 = λ K 1 + ( 1 − λ ) K 3 K_2=\lambda K_1+(1-\lambda)K_3 K2=λK1+(1−λ)K3
λ = K 3 − K 2 K 3 − K 1 \lambda = \frac{K_3-K_2}{K_3-K_1} λ=K3−K1K3−K2
P L L F λ = L L F − λ ∑ j = 1 j ( w j ^ ∣ θ j ∣ ) PLLF_\lambda = LLF-\lambda \sum_{j=1}^{j}(\widehat{w_j}|\theta_j|) PLLFλ=LLF−λj=1∑j(wj ∣θj∣)
G I C λ = 1 N { 2 [ L L F ( ^ } GIC_\lambda = \frac{1}{N}\{2[LLF(\hat{} \} GICλ=N1{2[LLF(^}
ϕ \phi ϕ