关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。
SQL 语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作。
主流的关系型数据库包括 Oracle、MySQL、SQL Server、Microsoft Access、DB2 等。
以上数据库在使用的时候必须先建库建表设计表结构,然后存储数据的时候按表结构丢存,如果数据与表结构不匹配就会存储失败。
NoSQL(NoSQL = Not Only SQL ),意思是“不仅仅是 SQL”,是非关系型数据库的总称。
除了主流的关系型数据库外的数据库,都认为是非关系型。
主流的 NoSQL 数据库有 Redis、MongBD、Hbase、CouhDB 等。
不需要预先建库建表定义数据存储表结构,每条记录可以有不同的数据类型和字段个数(比如微信群聊里的文字、图片、视频、音乐等)。
主流的 NosgL 数据库有 Redis、MongBD、Hbase、Memcached、ElasticSearch、TSDB 等。
关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。
SQL 和 NoSQL 数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。
要支持更多并发量,SQL 数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然 SQL 数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。
而 NoSQL 数据库是横向扩展的。因为非关系型数据存储天然就是分布式的,NoSQL 数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL 数据库从性能和稳定性方面考虑是你的最佳选择。SQL 数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然 NoSQL 数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。
可用于应对 Web2.0 纯动态网站类型的三高问题。
关系型数据库和非关系型数据库都有各自的特点与应用场景,两者的紧密结合将会给 Web2.0 的数据库发展带来新的思路。让关系数据库关注在关系上,非关系型数据库关注在存储上。例如,在读写分离的 MySQL 数据库环境中,可以把经常访问的数据存储在非关系型数据库中,提升访问速度。
总结:
关系型数据库:
实例–>数据库–>表(table)–>记录行(row)、数据字段(column)
非关系型数据库:
实例–>数据库–>集合(collection)–>键值对(key-value)
非关系型数据库不需要手动建数据库和集合(表)
Redis 是一个开源的、使用 C 语言编写的 NoSQL 数据库。
Redis 基于内存运行并支持持久化,采用 key-value(键值对)的存储形式,是目前分布式架构中不可或缺的一环。
Redis 服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个 Redis 进程,Redis 的实际处理速度则是完全依靠于主进程的执行效率。若在服务器上只运行一个Redis 进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降;若在同一台服务器上开启多个 Redis 进程,Redis 在提高并发处理能力的同时会给服务器的 CPU 造成很大压力。即:在实际生产环境中,需要根据实际的需求来决定开启多少个 Redis 进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若 CPU 资源比较紧张,采用单进程即可。
Redis 作为基于内存运行的数据库,缓存是其最常应用的场景之一。除此之外,Redis 常见应用场景还包括获取最新 N 个数据的操作、排行榜类应用、计数器应用、存储关系、实时分析系统、日志记录。
Redis 作为基于内存运行的数据库,是一个高性能的缓存,一般应用在 Session 缓存、队列、排行榜、计数器、最近最热文章、最近最热评论、发布订阅等。
Redis 适用于数据实时性要求高、数据存储有过期和淘汰特征的、不需要持久化或者只需要保证弱一致性、逻辑简单的场景。
systemctl stop firewalld
setenforce 0
yum install -y gcc gcc-c++ make
tar zxvf redis-5.0.7.tar.gz -C /opt/
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/1oca1/redis install
#由于Redis源码包中直接提供了Makefile文件,所以在解压完软件包后,不用先执行./confiqure进行配置,可直接执行make与make install命令进行安装。
#执行软件包提供的install_server.sh脚本文件设置Redis服务所需要的相关配置文件
cd /opt/redis-5.0.7/utils
./install_server.sh
……
慢慢回车
Please select the redis executable path [/usr/local/redis/bin/redis-server] /usr/local/redis/bin/redis-server #需要手动修改为
/usr/local/redis/bin/redis-server,注意要一次性正确输入
Selected config:
Port : 6379 #默认侦听端口为6379
Config file : /etc/redis/6379.conf #配置文件路径
Log file : /var/log/redis_6379.log #日志文件路径
Data dir : /var/lib/redis/6379 #数据文件路径
Executable : /usr/local/redis/bin/redis-server #可执行文件路径
Cli Executable : /usr/local/bin/redis-cli #客户端命令工具
修改配置 /etc/redis/6379.conf 参数
vim /etc/redis/6379.conf
70行,添加 监听的主机地址
bind 127.0.0.1 192.168.16.10
93行,Redis默认的监听端口
port 6379
137行,启用守护进程
daemonize yes
159行,指定 PID 文件
pidfile /var/run/redis_6379.pid
167行,日志级别
loglevel notice
172行,指定日志文件
logfile /var/log/redis_6379.log
/etc/init.d/redis_6379 restart
redis-server 用于启动 Redis 的工具
redis-benchmark 用于检测 Redis 在本机的运行效率
redis-check-aof 修复 AOF 持久化文件
redis-check-rdb 修复 RDB 持久化文件
redis-cli Redis命令行工具
语法:redis-cli -h host -p port -a password
-h | 指定远程主机 |
---|---|
-p | 指定 Redis 服务的端口号 |
-a | 指定密码,未设置数据库密码可以省略-a 选项 |
若不添加任何选项表示,则使用 127.0.0.1:6379 连接本机上的 Redis 数据库
redis-cli -h 192.168.16.10 -p 6379
redis-benchmark 是官方自带的 Redis 性能测试工具,可以有效的测试 Redis 服务的性能。
基本的测试语法:redis-benchmark [选项] [选项值]
-h | 指定服务器主机名 |
---|---|
-p | 指定服务器端口 |
-s | 指定服务器 socket |
-c | 指定并发连接数 |
-n | 指定请求数 |
-d | 以字节的形式指定 SET/GET 值的数据大小 |
-k | 1=keep alive 0=reconnect |
-r | SET/GET/INCR 使用随机 key, SADD 使用随机值 |
-P | 通过管道传输请求 |
-q | 强制退出 redis。仅显示 query/sec 值 |
--csv | 以 CSV 格式输出 |
-l(小写的L) | 生成循环,永久执行测试 |
-t | 仅运行以逗号分隔的测试命令列表 |
-I(大写的i) | Idle 模式。仅打开 N 个 idle 连接并等待 |
向 IP 地址为 192.168.16.10、端口为 6379 的 Redis 服务器发送 100 个并发连接与 100000 个请求测试性能
redis-benchmark -h 192.168.16.10 -p 6379 -c 100 -n 100000
测试存取大小为 100 字节的数据包的性能
redis-benchmark -h 192.168.16.10 -p 6379 -q -d 100
测试本机上 Redis 服务在进行 set 与 lpush 操作时的性能
redis-benchmark -t set,lpush -n 100000 -q
set 存放数据,命令格式为 set key value
get 获取数据,命令格式为 get key
keys 命令可以取符合规则的键值列表,通常情况可以结合*、?等选项来使用。
exists 命令可以判断键值是否存在。
del 命令可以删除当前数据库的指定 key。
type 命令可以获取 key 对应的 value 值类型。
rename 命令是对已有 key 进行重命名。(覆盖)
命令格式:rename 源key 目标key
使用rename命令进行重命名时,无论目标key是否存在都进行重命名,且源key的值会覆盖目标key的值。在实际使用过程中,建议先用 exists 命令查看目标 key 是否存在,然后再决定是否执行 rename 命令,以避免覆盖重要数据。
renamenx 命令的作用是对已有 key 进行重命名,并检测新名是否存在,如果目标 key 存在则不进行重命名。(不覆盖)
命令格式:renamenx 源key 目标key
dbsize 命令的作用是查看当前数据库中 key 的数目。
使用config set requirepass password命令设置密码
使用config get requirepass命令查看密码(一旦设置密码,必须先验证通过密码,否则所有操作不可用)
Redis 支持多数据库,Redis 默认情况下包含 16 个数据库,数据库名称是用数字 0-15 来依次命名的。
多数据库相互独立,互不干扰。
多数据库间切换
命令格式:select 序号
使用 redis-cli 连接 Redis 数据库后,默认使用的是序号为 0 的数据库。
127.0.0.1:6379> select 10 #切换至序号为 10 的数据库
127.0.0.1:6379[10]> select 15 #切换至序号为 15 的数据库
127.0.0.1:6379[15]> select 0 #切换至序号为 0 的数据库
清除数据库内数据
FLUSHDB:清空当前数据库数据
FLUSHALL:清空所有数据库的数据,慎用!
在 web 服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在 Redis 语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。
在 Redis 中,实现高可用的技术主要包括持久化、主从复制、哨兵和集群,下面分别说明它们的作用,以及解决了什么样的问题。
持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
主从复制:主从复制是高可用 Redis 的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
集群:通过集群,Redis 解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
持久化的功能:Redis 是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致 Redis 进程异常退出后数据的永久丢失,需要定期将 Redis 中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次 Redis 重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。
由于 AOF 持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此 AOF 是目前主流的持久化方式,不过 RDB 持久化仍然有其用武之地。
RDB 持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是 rdb;当 Redis 重新启动时,可以读取快照文件恢复数据。
RDB 持久化的触发分为手动触发和自动触发两种。
手动触发
save 命令和 bgsave 命令都可以生成 RDB 文件。
save 命令会阻塞 Redis 服务器进程,直到 RDB 文件创建完毕为止,在 Redis 服务器阻塞期间,服务器不能处理任何命令请求。
而 bgsave 命令会创建一个子进程,由子进程来负责创建 RDB 文件,父进程(即 Redis 主进程)则继续处理请求。
bgsave 命令执行过程中,只有 fork 子进程时会阻塞服务器,而对于 save 命令,整个过程都会阻塞服务器,因此 save 已基本被废弃,线上环境要杜绝 save 的使用。
自动触发
在自动触发 RDB 持久化时,Redis 也会选择 bgsave 而不是 save 来进行持久化。
save m n
自动触发最常见的情况是在配置文件中通过 save m n,指定当 m 秒内发生 n 次变化时,会触发 bgsave。
vim /etc/redis/6379.conf
#219行以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
#254行指定RDB文件名
dbfilename dump.rdb
#264行指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
#242行是否开启RDB文件压缩
rdbcompression yes
其他自动触发机制
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。
RDB 文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于 AOF 的优先级更高,因此当 AOF 开启时,Redis 会优先载入 AOF 文件来恢复数据;只有当 AOF 关闭时,才会在Redis服务器启动时检测 RDB 文件,并自动载入。服务器载入 RDB 文件期间处于阻塞状态,直到载入完成为止。
Redis 载入 RDB 文件时,会对 RDB 文件进行校验,如果文件损坏,则日志中会打印错误,Redis 启动失败。
RDB 持久化是将进程数据写入文件,而 AOF 持久化,则是将 Redis 执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当 Redis 重启时再次执行 AOF 文件中的命令来恢复数据。
与 RDB 相比,AOF 的实时性更好,因此已成为主流的持久化方案。
Redis 服务器默认开启 RDB,关闭 AOF;要开启 AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
#700行修改,开启AOF
appendonly yes
#704行指定AOF文件名称
appendfilename "appendonly.aof"
#796行是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
/etc/init.d/redis_6379 restart
由于需要记录 Redis 的每条写命令,因此 AOF 不需要触发,下面介绍 AOF 的执行流程。
AOF 的执行流程包括
命令追加 (append):将 Redis 的写命令追加到缓冲区 aof_buf
Redis 先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘 IO 成为 Redis 负载的瓶颈。
命令追加的格式是 Redis 命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在 AOF 文件中,除了用于指定数据库的 select 命令(如 select 0为选中0号数据库)是由 Redis 添加的,其他都是客户端发送来的写命令。
文件写入 (write) 和文件同步 (sync) :根据不同的同步策略将 aof_buf 中的内容同步到硬盘;
Redis 提供了多种 AOF 缓存区的同步文件策略,策略涉及到操作系统的 write 函数和 fsync 函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用 write 函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了 fsync、fdatasync 等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。
文件重写(rewrite):定期重写 AOF 文件,达到压缩的目的。
随着时间流逝,Redis 服务器执行的写命令越来越多,AOF 文件也会越来越大;过大的 AOF 文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。
文件重写是指定期重写 AOF 文件,减小 AOF 文件的体积。需要注意的是,AOF 重写是把 Redis 进程内的数据转化为写命令,同步到新的 AOF 文件;不会对旧的 AOF 文件进行任何读取、写入操作!
关于文件重写需要注意的另一点是:对于 AOF 持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些实现中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。
AOF 缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /etc/redis/6379.conf
--------------729-----------
- appendfsync always: 命令写入 aof_buf 后立即调用系统 fsync 操作同步到 AOF 文件, fsync 完成后线程返回。这种情况下,每次有写命令都要同步到 AOF 文件,硬盘 IO 成为性能瓶颈,Redis 只能支持大约几百 TPS 写入,严重降低了 Redis 的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低 SSD 的寿命。
- appendfsync no: 命令写入 aof_buf 后调用系统write操作,不对 AOF 文件做 fsync 同步;同步由操作系统负责,通常同步周期为 30 秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
- appendfsync everysec: 命令写入 aof_buf 后调用系统 write 操作,write 完成后线程返回;fsync 同步文件操作由专门的线程每秒调用一次。everysec 是前述两种策略的折中,是性能和数据安全性的平衡,因此是 Redis 的默认配置,也是我们推荐的配置。
文件重写之所以能够压缩 AOF 文件,原因在于
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。
文件重写的触发,分为手动触发和自动触发:
vim /etc/redis/6379.conf
------------771-----------
auto-aof-rewrite-percentage 100 :当前 AOF 文件大小(即aof_current_size)是上次日志重写时 AOF 文件大小 (aof_base_size) 两倍时,发生 BGREWRITEAOF 操作
auto-aof-rewrite-min-size 64mb :当前 AOF 文件执行 BGREWRITEAOF 命令的最小值,避免刚开始启动 Reids 时由于文件尺寸较小导致频繁的 BGREWRITEAOF
关于文件重写的流程,有两点需要特别注意:(1)重写由父进程 fork 子进程进行;(2)重写期间 Redis 执行的写命令,需要追加到新的 AOF 文件中,为此 Redis 引入了aof_rewrite_buf 缓存。
文件重写的流程如下
(1)Redis 父进程首先判断当前是否存在正在执行 bgsave/bgrewriteaof 的子进程,如果存在则 bgrewriteaof 命令直接返回,如果存在 bgsave 命令则等 bgsave 执行完成后再执行。
(2)父进程执行 fork 操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程 fork 后,bgrewriteaof 命令返回 “Background append only file rewrite started” 信息并不再阻塞父进程, 并可以响应其他命令。Redis 的所有写命令依然写入 AOF 缓冲区,并根据 appendfsync 策略同步到硬盘,保证原有 AOF 机制的正确。
(3.2)由于 fork 操作使用写时复制技术,子进程只能共享 fork 操作时的内存数据。由于父进程依然在响应命令,因此 Redis 使用 AOF 重写缓冲区 (aof_rewrite_buf) 保存这部分数据,防止新 AOF 文件生成期间丢失这部分数据。也就是说,bgrewriteaof 执行期间,Redis 的写命令同时追加到 aof_buf和aof_rewirte_buf 两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的 AOF 文件。
(5.1)子进程写完新的 AOF 文件后,向父进程发信号,父进程更新统计信息,具体可以通过 info persistence 查看。
(5.2)父进程把 AOF 重写缓冲区的数据写入到新的 AOF 文件,这样就保证了新 AOF 文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的 AOF 文件替换老文件,完成 AOF 重写。
当 AOF 开启时,Redis 启动时会优先载入 AOF 文件来恢复数据;只有当 AOF 关闭时,才会载入 RDB 文件恢复数据。
当 AOF 开启,但 AOF 文件不存在时,即使 RDB 文件存在也不会加载。
Redis 载入 AOF 文件时,会对 AOF 文件进行校验,如果文件损坏,则日志中会打印错误,Redis 启动失败。但如果是 AOF 文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且 aof-load-truncated 参数开启,则日志中会输出警告,Redis 忽略掉 AOF 文件的尾部,启动成功。aof-load-truncated 参数默认是开启的。
RDB 持久化
优点:RDB 文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比 AOF 快很多。当然,与 AOF 相比,RDB 最重要的优点之一是对性能的影响相对较小。
缺点:RDB 文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB 文件需要满足特定格式,兼容性差(如老版本的 Redis 不兼容新版本的RDB文件)。
对于 RDB 持久化,一方面是 bgsave 在进行 fork 操作时 Redis 主进程会阻塞,另一方面,子进程向硬盘写数据也会带来 IO 压力。
AOF 持久化
与 RDB 持久化相对应,AOF 的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。
对于 AOF 持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO 压力更大,甚至可能造成 AOF 追加阻塞问题。
AOF 文件的重写与 RDB 的 bgsave 类似,会有fork时的阻塞和子进程的 IO 压力问题。相对来说,由于 AOF 向硬盘中写数据的频率更高,因此对 Redis 主进程性能的影响会更大。
----- 查看 Redis 内存使用 -----
redis-cli -h 192.168.16.10 -p 6379
192.168.16.10:6379> info memory
----- 内存碎片率 -----
操系统分配的内存值 used_memory_rss 除以Redis 使用的内存值 used_memory 计算得出
内存碎片是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)
#跟踪内存碎片率对理解 Redis 实例的资源性能是非常重要的:
----- 内存使用率 -----
redis 实例的内存使用率超过可用最大内存,操作系统将开始进行内存与 swap 空间交换。
避免内存交换发生的方法
----- 内回收 key -----
保证合理分配redis有限的内存资源。
当达到设置的最大阀值时,需选择一种 key 的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:
vim /etc/redis/6379.conf
598取消注释
maxmemory-policy noenviction
volatile-lru | 使用 LRU 算法从已设置过期时间的数据集合中淘汰数据 |
---|---|
volatile-ttl | 从已设置过期时间的数据集合中挑选即将过期的数据淘汰 |
volatile-random | 从已设置过期时间的数据集合中随机挑选数据淘汰 |
allkeys-lru | 使用 LRU 算法从所有数据集合中淘汰数据 |
allkeys-random | 从数据集合中任意选择数据淘汰 |
noenviction | 禁止淘汰数据 |
1.Redis为什么这么快?
1、Redis是一款纯内存结构,避免了磁盘I/O等耗时操作。
2、Redis命令处理的核心模块为单线程,减少了锁竞争,以及频繁创建线程和销毁线程的代价,减少了线程上下文切换的消耗。
3、采用了I/O多路复用机制,大大提升了并发效率。
注:在Redis6.0中新增加的多线程也只是针对处理网络请求过程采用了多线性,而数据的读写命令,仍然是单线程处理的。