题意:
思路:把高度差最小的放两边。分别将比
a
1
a_1
a1大的按递增放
a
1
a_1
a1后边,将比
a
n
a_n
an大的按递增放
a
n
a_n
an前边
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}//最低位1及其后面的0构成的数值
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n;
const int N=2e5+10;
int a[N];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
int d=ll_INF;
int x=0,y=0;
int idx1=0,idx2=0;
sort(a+1,a+1+n);
for(int i=2;i<=n;i++)
{
if(d>abs(a[i]-a[i-1]))
{
x=a[i],y=a[i-1];
idx1=i-1,idx2=i;
d=abs(a[i]-a[i-1]);
}
}
if(x>y)swap(x,y);
vector<int>v1,v2;
for(int i=1;i<=n;i++)
{
if(i==idx1||i==idx2)continue;
if(a[i]>=x)v1.pb(a[i]);
else v2.pb(a[i]);
}
cout<<x<<' ';
for(auto x:v1)cout<<x<<' ';
for(auto x:v2)cout<<x<<' ';
cout<<y<<endl;
}
signed main()
{
io;
cin>>_;
while(_--)
solve();
return 0;
}
题意:
思路:
字符串长度不超过1000,而
2
6
3
>
1000
26^3>1000
263>1000证明满足题意得子串长度最大为3
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}//最低位1及其后面的0构成的数值
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n;
void solve()
{
cin>>n;
string s;
cin>>s;
string a="";
queue<pair<string,int>>q;
q.push({a,0});
while(q.size())
{
auto t=q.front();
q.pop();
t.x.resize(t.y+1);
for(char c='a';c<='z';c++)
{
t.x[t.y]=c;
if(s.find(t.x)==-1)
{
cout<<t.x<<endl;
return;
}
else q.push({t.x,t.y+1});
}
}
}
signed main()
{
io;
cin>>_;
while(_--)
solve();
return 0;
}
题意:
思路:
A和B足够聪明,所以A和B要尽可能在自己操作完一次后形成一个回文串。
如果零得个数为偶数只有两种情况:
但是A的操作对答案无影响,所以B足够聪明,B就一定能获胜(后出手)。
如果零的个数是奇数:
A第一次放在最中间,那么剩下偶数个是B起手,那么
A赢
B赢(只要A在第三步反转“作死”,B赢,但是两个人足够聪明,所以排除这种情况)
综上所述,如果零的个数为偶数或者1,Bwin,如果是奇数,Awin
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}//最低位1及其后面的0构成的数值
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n;
void solve()
{
cin>>n;
string s;
cin>>s;
int one=0,zero=0;
for(int i=0;i<n;i++)
if(s[i]=='0')zero++;
else one++;
if(zero==0)
{
cout<<"DRAW"<<endl;
return;
}
else if(zero%2)
{
if(zero>1)cout<<"ALICE"<<endl;
else cout<<"BOB"<<endl;
return;
}
else
{
cout<<"BOB"<<endl;
return;
}
}
signed main()
{
io;
cin>>_;
while(_--)
solve();
return 0;
}
题意:
思路:
d
!
d!
d!当
d
=
15
d=15
d=15时已经超过题目给的范围,我们发现,
2
d
2^d
2d是2进制中1的个数,如果k要求最小,那么
2
d
2^d
2d的个数尽可能少,
d
!
d!
d!尽可能大,考虑状态压缩,枚举剪掉的
d
!
d!
d!。
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}//最低位1及其后面的0构成的数值
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n;
const int N=21;
int f[N];
int cnt(int x)
{
int res=0;
while(x)
{
if(x&1)res++;
x>>=1;
}
return res;
}
void solve()
{
int x;
cin>>x;
int res=cnt(x);
for(int i=0;i<1<<15;i++)
{
int y=x;
for(int j=0;j<15;j++)
{
if((i>>j)&1)y-=f[j+1];
}
if(y>=0)res=min(res,cnt(y)+cnt(i));
}
cout<<res<<endl;
}
signed main()
{
io;
f[0]=1;
for(int i=1;i<=15;i++)f[i]=f[i-1]*i;
cin>>_;
while(_--)
solve();
return 0;
}
题意:
思路:
素数除了2以外都是奇数,奇数+奇数=偶数,偶数+奇数=奇数
可知这棵树一定是一条链,一种方案是轮换放2,3
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}//最低位1及其后面的0构成的数值
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n;
const int N=1e5+10;
int h[N],e[N*2],ne[N*2],idx;
int d[N];
map<PII,int>mp;
PII q[N];
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void dfs(int u,int fa,int f)
{
if(h[u]==-1)return;
for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(j==fa)continue;
if(f)mp[{u,j}]=mp[{j,u}]=2;
else mp[{u,j}]=mp[{j,u}]=3;
f^=1;
dfs(j,u,f);
}
}
void solve()
{
cin>>n;
idx=0;
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++)d[i]=0;
for(int i=0;i<n-1;i++)
{
int a,b;
cin>>a>>b;
add(a,b),add(b,a);
d[a]++,d[b]++;
q[i]={a,b};
}
int root=-1;
for(int i=1;i<=n;i++)
{
if(d[i]>2)
{
cout<<-1<<endl;
return;
}
if(d[i]==1)
{
root=i;
}
}
dfs(root,-1,0);
for(int i=0;i<n-1;i++)
{
cout<<mp[q[i]]<<' ';
}
cout<<endl;
}
signed main()
{
io;
cin>>_;
while(_--)
solve();
return 0;
}
题意:
思路:
我们可以构造两个点之间的距离是他们距离根节点的差值,dfs即可
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}//最低位1及其后面的0构成的数值
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n;
const int N=2e5+10;
int h[N],ne[N<<1],e[N<<1],idx=1;
int d[N];
int c[N];
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void dfs(int u)
{
for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(j==u)continue;
d[i]=c[j]-c[u];
dfs(j);
}
}
void solve()
{
cin>>n;
idx=1;
int root=-1;
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
if(x==i)
{
root=x;
d[root]=0;
}
add(x,i);
}
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
c[x]=i;
}
dfs(root);
for(int i=1;i<=n;i++)
{
if(d[i]<0)
{
cout<<-1<<endl;
return;
}
}
for(int i=1;i<=n;i++)cout<<d[i]<<' ';
cout<<endl;
}
signed main()
{
io;
cin>>_;
while(_--)
solve();
return 0;
}