• Kubernetes 是什么 ?


    目录

    一、 Kubernetes 的概述

    1.1 时光回溯

    1.2 为什么需要 Kubernetes,它能做什么?

    1.3 Kubernetes 不是什么

    二、Kubernetes 组件

     2.1 控制平面组件(Control Plane Components)

    2.1.1kube-apiserver

    2.1.2etcd

    2.1.3kube-scheduler

    2.1.4kube-controller-manager

    2.1.5cloud-controller-manager

    2.2Node 组件

    2.2.1kubelet

    2.2.2kube-proxy

    容器运行时(Container Runtime)

    三、Kubernetes API

    3.1 OpenAPI V2

    3.2 OpenAPI V3


    一、 Kubernetes 的概述

           Kubernetes 是一个可移植、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。 Kubernetes 拥有一个庞大且快速增长的生态,其服务、支持和工具的使用范围相当广泛。

    Kubernetes 这个名字源于希腊语,意为“舵手”或“飞行员”。k8s 这个缩写是因为 k 和 s 之间有八个字符的关系。 Google 在 2014 年开源了 Kubernetes 项目。 Kubernetes 建立在Google 大规模运行生产工作负载十几年经验的基础上, 结合了社区中最优秀的想法和实践。

    引用官网: 官网中文文档

    1.1 时光回溯

    让我们回顾一下为何 Kubernetes 能够裨益四方。

     传统部署时代:

           早期,各机构是在物理服务器上运行应用程序。 由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。 例如,如果在物理服务器上运行多个应用程序, 则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。 一种解决方案是将每个应用程序都运行在不同的物理服务器上, 但是当某个应用程式资源利用率不高时,剩余资源无法被分配给其他应用程式, 而且维护许多物理服务器的成本很高。

    虚拟化部署时代:

    因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。 虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性, 因为一个应用程序的信息不能被另一应用程序随意访问。

    虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序, 而因此可以具有更高的可伸缩性,以及降低硬件成本等等的好处。

    每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统(OS)。

    容器部署时代:

    容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。 因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。 由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。

    容器因具有许多优势而变得流行起来。下面列出的是容器的一些好处:

    • 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
    • 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性), 提供可靠且频繁的容器镜像构建和部署。
    • 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时, 从而将应用程序与基础架构分离。
    • 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
    • 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。
    • 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、 Google Kubernetes Engine 和其他任何地方运行。
    • 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
    • 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分, 并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
    • 资源隔离:可预测的应用程序性能。
    • 资源利用:高效率和高密度。

    1.2 为什么需要 Kubernetes,它能做什么?

            容器是打包和运行应用程序的好方式。在生产环境中, 你需要管理运行着应用程序的容器,并确保服务不会下线。 例如,如果一个容器发生故障,则你需要启动另一个容器。 如果此行为交由给系统处理,是不是会更容易一些?

    这就是 Kubernetes 要来做的事情! Kubernetes 为你提供了一个可弹性运行分布式系统的框架。 Kubernetes 会满足你的扩展要求、故障转移、部署模式等。 例如,Kubernetes 可以轻松管理系统的 Canary 部署。

    Kubernetes 为你提供:

    • 服务发现和负载均衡

      Kubernetes 可以使用 DNS 名称或自己的 IP 地址来曝露容器。 如果进入容器的流量很大, Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。

    • 存储编排

      Kubernetes 允许你自动挂载你选择的存储系统,例如本地存储、公共云提供商等。

    • 自动部署和回滚

      你可以使用 Kubernetes 描述已部署容器的所需状态, 它可以以受控的速率将实际状态更改为期望状态。 例如,你可以自动化 Kubernetes 来为你的部署创建新容器, 删除现有容器并将它们的所有资源用于新容器。

    • 自动完成装箱计算

      Kubernetes 允许你指定每个容器所需 CPU 和内存(RAM)。 当容器指定了资源请求时,Kubernetes 可以做出更好的决策来为容器分配资源。

    • 自我修复

      Kubernetes 将重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器, 并且在准备好服务之前不将其通告给客户端。

    • 密钥与配置管理

      Kubernetes 允许你存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。 你可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。

    1.3 Kubernetes 不是什么

           Kubernetes 不是传统的、包罗万象的 PaaS(平台即服务)系统。 由于 Kubernetes 是在容器级别运行,而非在硬件级别, 它提供了 PaaS 产品共有的一些普遍适用的功能, 例如部署、扩展、负载均衡、日志记录和监视。 但是,Kubernetes 不是单体式(monolithic)系统,那些默认解决方案都是可选、可插拔的。 Kubernetes 为构建开发人员平台提供了基础,但是在重要的地方保留了用户选择权,能有更高的灵活性。

    Kubernetes:

    • 不限制支持的应用程序类型。 Kubernetes 旨在支持极其多种多样的工作负载,包括无状态、有状态和数据处理工作负载。 如果应用程序可以在容器中运行,那么它应该可以在 Kubernetes 上很好地运行。
    • 不部署源代码,也不构建你的应用程序。 持续集成(CI)、交付和部署(CI/CD)工作流取决于组织的文化和偏好以及技术要求。
    • 不提供应用程序级别的服务作为内置服务,例如中间件(例如消息中间件)、 数据处理框架(例如 Spark)、数据库(例如 MySQL)、缓存、集群存储系统 (例如 Ceph)。这样的组件可以在 Kubernetes 上运行,并且/或者可以由运行在 Kubernetes 上的应用程序通过可移植机制 (例如开放服务代理)来访问。
    • 不是日志记录、监视或警报的解决方案。 它集成了一些功能作为概念证明,并提供了收集和导出指标的机制。
    • 不提供也不要求配置用的语言、系统(例如 jsonnet),它提供了声明性 API, 该声明性 API 可以由任意形式的声明性规范所构成。
    • 不提供也不采用任何全面的机器配置、维护、管理或自我修复系统。
    • 此外,Kubernetes 不仅仅是一个编排系统,实际上它消除了编排的需要。 编排的技术定义是执行已定义的工作流程:首先执行 A,然后执行 B,再执行 C。 而 Kubernetes 包含了一组独立可组合的控制过程, 可以连续地将当前状态驱动到所提供的预期状态。 你不需要在乎如何从 A 移动到 C,也不需要集中控制,这使得系统更易于使用 且功能更强大、系统更健壮,更为弹性和可扩展。

    二、Kubernetes 组件


           一个 Kubernetes 集群是由一组被称作节点(node)的机器组成, 这些节点上会运行由 Kubernetes 所管理的容器化应用。 且每个集群至少有一个工作节点。

           工作节点会托管所谓的 Pods,而 Pod 就是作为应用负载的组件。 控制平面管理集群中的工作节点和 Pods。 为集群提供故障转移和高可用性, 这些控制平面一般跨多主机运行,而集群也会跨多个节点运行。

    一个正常运行的 Kubernetes 集群所需的各种组件。

     2.1 控制平面组件(Control Plane Components)

           控制平面组件会为集群做出全局决策,比如资源的调度。 以及检测和响应集群事件,例如当不满足部署的 replicas 字段时, 要启动新的 pod)。

    控制平面组件可以在集群中的任何节点上运行。 然而,为了简单起见,设置脚本通常会在同一个计算机上启动所有控制平面组件, 并且不会在此计算机上运行用户容器。

    2.1.1kube-apiserver

            API 服务器是 Kubernetes 控制平面的组件, 该组件负责公开了 Kubernetes API,负责处理接受请求的工作。 API 服务器是 Kubernetes 控制平面的前端。

           Kubernetes API 服务器的主要实现是 kube-apiserver。 kube-apiserver 设计上考虑了水平扩缩,也就是说,它可通过部署多个实例来进行扩缩。 你可以运行 kube-apiserver 的多个实例,并在这些实例之间平衡流量。

    2.1.2etcd

        etcd 是兼顾一致性与高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。

    你的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。

              如果想要更深入的了解 etcd,请参考 etcd 文档

    2.1.3kube-scheduler

    kube-scheduler 是控制平面的组件, 负责监视新创建的、未指定运行节点(node)的 Pods, 并选择节点来让 Pod 在上面运行。

    调度决策考虑的因素包括单个 Pod 及 Pods 集合的资源需求、软硬件及策略约束、 亲和性及反亲和性规范、数据位置、工作负载间的干扰及最后时限。

    2.1.4kube-controller-manager

    kube-controller-manager 是控制平面的组件, 负责运行控制器进程。

           从逻辑上讲, 每个控制器都是一个单独的进程, 但是为了降低复杂性,它们都被编译到同一个可执行文件,并在同一个进程中运行。

    这些控制器包括:

    • 节点控制器(Node Controller):负责在节点出现故障时进行通知和响应
    • 任务控制器(Job Controller):监测代表一次性任务的 Job 对象,然后创建 Pods 来运行这些任务直至完成
    • 端点控制器(Endpoints Controller):填充端点(Endpoints)对象(即加入 Service 与 Pod)
    • 服务帐户和令牌控制器(Service Account & Token Controllers):为新的命名空间创建默认帐户和 API 访问令牌

    2.1.5cloud-controller-manager

    cloud-controller-manager 是指嵌入特定云的控制逻辑之 控制平面组件。 cloud-controller-manager 允许你将你的集群连接到云提供商的 API 之上, 并将与该云平台交互的组件同与你的集群交互的组件分离开来。

    cloud-controller-manager 仅运行特定于云平台的控制器。 因此如果你在自己的环境中运行 Kubernetes,或者在本地计算机中运行学习环境, 所部署的集群不需要有云控制器管理器。

    与 kube-controller-manager 类似,cloud-controller-manager 将若干逻辑上独立的控制回路组合到同一个可执行文件中, 供你以同一进程的方式运行。 你可以对其执行水平扩容(运行不止一个副本)以提升性能或者增强容错能力。

    下面的控制器都包含对云平台驱动的依赖:

    • 节点控制器(Node Controller):用于在节点终止响应后检查云提供商以确定节点是否已被删除
    • 路由控制器(Route Controller):用于在底层云基础架构中设置路由
    • 服务控制器(Service Controller):用于创建、更新和删除云提供商负载均衡器

    2.2Node 组件

    节点组件会在每个节点上运行,负责维护运行的 Pod 并提供 Kubernetes 运行环境。

    2.2.1kubelet

    kubelet 会在集群中每个节点(node)上运行。 它保证容器(containers)都运行在 Pod 中。

    kubelet 接收一组通过各类机制提供给它的 PodSpecs, 确保这些 PodSpecs 中描述的容器处于运行状态且健康。 kubelet 不会管理不是由 Kubernetes 创建的容器。

    2.2.2kube-proxy

    kube-proxy 是集群中每个节点(node)所上运行的网络代理, 实现 Kubernetes 服务(Service) 概念的一部分。

    kube-proxy 维护节点上的一些网络规则, 这些网络规则会允许从集群内部或外部的网络会话与 Pod 进行网络通信。

    如果操作系统提供了可用的数据包过滤层,则 kube-proxy 会通过它来实现网络规则。 否则,kube-proxy 仅做流量转发。

    容器运行时(Container Runtime)

    容器运行环境是负责运行容器的软件。

    Kubernetes 支持许多容器运行环境,例如 Docker、 containerd、 CRI-O 以及 Kubernetes CRI (容器运行环境接口) 的其他任何实现。

    三、Kubernetes API


           Kubernetes 控制面 的核心是 API 服务器。 API 服务器负责提供 HTTP API,以供用户、集群中的不同部分和集群外部组件相互通信。

           Kubernetes API 使你可以查询和操纵 Kubernetes API 中对象(例如:Pod、Namespace、ConfigMap 和 Event)的状态。

    大部分操作都可以通过 kubectl 命令行接口或 类似 kubeadm 这类命令行工具来执行, 这些工具在背后也是调用 API。不过,你也可以使用 REST 调用来访问这些 API。

    3.1 OpenAPI V2

    Kubernetes API 服务器通过 /openapi/v2 端点提供聚合的 OpenAPI v2 规范。 

    3.2 OpenAPI V3

    特性状态: Kubernetes v1.24 [beta]

    Kubernetes v1.24 提供将其 API 以 OpenAPI v3 形式发布的 beta 支持; 这一功能特性处于 beta 状态,默认被开启。 你可以通过为 kube-apiserver 组件关闭 OpenAPIV3 特性门控来禁用此 beta 特性。

     谢谢点赞!

  • 相关阅读:
    为什么阿里Java开发手册不推荐使用Timestamp
    基于深度学习的智能PCB板缺陷检测系统(Python+清新界面+数据集)
    egg单元测试Mocha报错Error: Cannot find module ‘mocha‘解决办法
    vue常用6种数据加密方式的使用
    tiup cluster check
    棋盘格测距-单目相机(OpenCV/C++)
    Android 中字符串空格占位
    MyBatis
    线程和进程的区别
    ceph 分布式存储与部署
  • 原文地址:https://blog.csdn.net/qq_35995514/article/details/125457268